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The existence of nontrivial (x#0) periodic solutions of a general class of periodic
nonlinear difference equations is proved using bifurcation theory methods. Specifi-
cally, the existence of a global continuum of nontrivial periodic solutions that
bifurcates from the trivial solution (x=0) is proved. Conditions are given under which
the nontrivial solutions are positive. A prerequisite Fredholm and adjoint operator
theory for linear periodic systems is developed. An application to population dynam-
ics is made.
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1 INTRODUCTION
Systems of difference equations of the form
x(t+1)=Px(t), 1=0,1.2....

(often called “matrix” equations) have found widespread application
to a variety of fields, most notably to population dynamics [1.3-5].
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548 J.M. CUSHING

When the “projection matrix” P= P(x(¢)) depends on the population
state vector x(7), the system is nonlinear. If P does not depend
explicitly on 7 and the equation is “autonomous”, then equilibria
play a central role. In population dynamics, this is the case when the
external environment and all demographic vital rates are constant in
time (common modeling assumptions). The general theory of equili-
bria for nonlinear matrix equations is well developed [3-5]. A
nonautonomous case of interest is when the projection matrix P is
periodically dependent on ¢. This arises in population dynamics, for
example, when periodic fluctuations occur in environmental or
demographical parameters. Such fluctuations can be due to seasonal
or daily environmental periodicities (e.g. in resource availability),
periodic life cycles stages (e.g. birth and death rates), etc. In this case
the projection matrix takes the form P=P(1,x) where P(t,x) is
periodic in ¢ with some integer period p. For equations of this form
one is interested in the existence and stability of p-periodic solutions
(in place of equilibria). Since the equation has the trivial p-periodic
solution x(1)=0, the concern is with nontrivial p-periodic solutions
and, in applications such as in population dynamics, with nonnega-
tive or positive p-periodic solutions.

Applying bifurcation theory to a general class of difference
equations containing a parameter (Eq. (11) (which includes matrix
equations as a special case)), Henson [6] proved the existence of a
continuum of nontrivial solutions that bifurcates from the trivial
solution as the parameter is varied through a critical value. The
result in [6] is local in that it establishes the existence of nontrivial
p-periodic solutions only near the bifucation point. Our goal in this
paper is to prove that this bifurcating continuum of nontrivial
p-periodic solutions exists globally (Theorem 2). Furthermore, for
the special case of matrix equations, we give conditions under which
the continuum consists of positive solutions (Theorem 3).

We begin in Section 2 with some prerequisite linear theory. This
theory is a Hilbert space reformulation and extension of the
Fredholm theory for linear systems given in [6]. Our main results are
proved in Scction 3 for a class of difference equations that contain a
parameter. namely equations of the form (11). Finally. an applica-
tion to population dynamics is given in Section 4.
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2 SOME LINEAR THEORY FOR PERIODIC MAPS

A Fredholm theory for systems of difference equations is proved in
[6]. In this section we develop a Fredholm theory from a different
point of view. We formulate the theory on a Hilbert space of
sequences in terms of a related adjoint problem.

Let Z denote the set of integers. For i,j€ ZU{—o0, + co}, define
the subsets of integers

Zli,jl={ne Z|i<n<j},

Z(ijl={ne Z|i<n<j},
Zlij)={neZ|i<n<j}
Z(i,)={neZ|i<n<j}

For a positive integer n € Z[1, + 00), let R” denote the set of all n x 1
(column) vectors of real numbers and R"™" the set of all nxn
matrices consisting of real numbers. For a positive integer pe
Z[1,+ o0) define the linear spaces of p-periodic, “forward” p-periodic
and “backward” p-periodic sequences:

Sy={x: Z— R"| x(t+p) = x(1t) Vt € Z},

S, ={x: Z[0, + 00) = R" | x(1 + p) = x(1) V1 € Z[0. + c0)},

S, ={x: Z(=oo,p—1] = R" | x(1) = x(t — p) Vt € Z(~o00.p — 1]}.
These spaces are finite dimensional Hilbert spaccs under the inner
product

p—1

(o) =D x(r) - 1(1), (1)
t=0
where x-y denotes the usual inner product in R". Finally, let M,
denote the set of p-periodic sequences of n x n matrices, i.e.
M, ={A: 7 — R" | A(t+p) = A(1) Vi € Z}.
Consider the initial value problem

x(t+ 1) = A(0)x(r) + h(1). 1€ Z[0,+ ),
x(0) = xo.
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where the coefficient matrix A(z) and A(t) are p-periodic, i.e.

AeM, and heS,. (3)

We are interested in the existence of forward p-periodic solutions of
(2), i.e. the existence of sequences x € S;' that satisfy the equations
in (2).

We begin by developing formulas for the solutions cf homoge-
neous and nonhomogeneous linear initial value problems. Given an
integer s€ Z and an initial vector x;€ R", we can write the unique
(forward) solution of the homogeneous initial value problem

I

A(t)x(t). t € Z[s, + ),

Xy

x(t+1

)
x(s)

Il

as

x(t) = X(t,8)x5, 1€ Z[s,+ 0),

where the “fundamental solution matrix” X(t,s) is defined for
teZ[s,+00) by

X(r.s) = {A(z- DA(1—2)---A(s + 1)A(s)  for 1 € Z[s+ 1.+ o0).
v for t = s.

(4)

Here [ is the n x n identity matrix.

Given an integer s€ Z and an initial vector x,€ R”, we can wrile
the unique (forward) solution of the nonhomogeneous initial value
problem

x(t+1) = A()x(t) + h(1), 1€ Z[s.+ 00),

x(s) = x4

as

-y v t—1 .y . N T N
(1) = {x(z,sm + 3 X i+ Dh()  for ¢ SZ[“ + L +00), (5
X, for t =s.

This formula is called the “variation of constants™ formula.
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LEMMA | Suppose that x:Z[0,+ oco)~ R" satisfies the nonhomoge-
neous initial value problem (2). Then x¢€ S, if and only if

x( p)=x(0).

Proof For x € S, the condition x{ p)=x(0) follows by definition.
Conversely, suppose that x( p)=x(0). A straightforward calculation
shows that z: Z[0, + oc) — R" defined by z(r) = x(1 + p) also satisfies
(2) and consequently (by uniqueness) z(r) = x(¢) for all t € Z[0, + o).
It follows that x is forward p-periodic and hence lies in S .

The unique solution of the homogeneous initial value problem

x(t+ 1) = A(t)x(r), 1€ Z[0,+ o), (6)

.\”(0) = Xp t
is given by x(f)=X(1.0)xo. Let ker(/—X(p.0)) denote the kernel
(nullspace) of the n x » matrix / — X{p,0). By Lemma | the solution
of (6) is (forward) p-periodic if and only if xq € ker(/ — X(p, 0)).

The set of (forward) p-periodic solutions of (6), i.e. the set
of solutions with initial vectors xo € ker(J — X(p,0)). is a finite di-
mensional subspace of ST whose dimension is equal to
dim ker(I — X( p,0)). The initial value problem (6) has a “nontrivial”
(forward) p-periodic solution if and only if dimker(/ - X(p.,0))> 0,
i.e. if and only if 1 is an eigenvalue of /— X{(p.0) and xq is an
associated right eigenvector.

The initial value problem

wis— 1) = p(s)A(s) forse€ Z(~oc.p—1],
(7)
yp=1=w
will be called the “adjoint problem™ associated with (6). Here
3y Z(=, p~1]— R" where v(r) denotes the transpose of 1(7)

(thus, 3(¢) i1s a 1 x n row vector). The unique solution of the adjoint
problem (7) is given by

vs)=1,X(p.s+1) forse Z{—~.p—1]

The solution v(s) of the adjoint problem (7) is (backward) p-periodic
if v(s)=1(s — p) for all s€ Z{—~>c.p — 1]. A proof similar to that given



[Cushing, Jim M] [University of Arizona] At: 21:58 7 Apri

Downloaded By:

552 J.M. CUSHING

for Lemma | shows that the solution of (7) is (backward) p-periodic if
and only it y(p— 1)=yp(—1), i.e. if and only ifypT € ker(1 — XT(p.0)).
The set of (backward) p-periodic solutions of the adjoint problem
(7), ie. the set of solutions with initial vectors satisfying )‘,T o
ker(/ - X1(p,0)), is a finite dimensional Hilbert space whose dimen-
sion is equal to dimker(/— X '(p,0))=dimker(/— X(p.0)). The
adjoint problem (7) has a nontrivial (backward) p-periodic solution if
and only if dim ker(7 — X(p,0)) >0, i.e. if and only if | is an eigenvalue
of I—Xx%(p,0) and },f is an associated eigenvector (i.e. y, is a left
eigenvector of 7 — X( p.0)).

To conclude these preliminaries we return to the nonhomogeneous
initial value problem (2) and the existence of p-periodic solutions.
By Lemma 1 the solution of (2) is (forward) p-periodic if and only if
the initial condition x, satisfies the linear algebraic equation

p—1

(1= X(p.0)xo = > _ X(p.i+ 1h(i).
i=0

This equation 1s uniquely solvable for x,€ R” if and only if
dimker(/ — X( p.0))=0. If dim ker(/ — X( p,0)) > 0, then this equation
has a solution if and only if the right-hand side is orthogonal to all
vectors in ker(/ — X '(p.0)). i.e. if and only if

-1

~y

X(poi+ Nh(iy =0, Yol el—XT(p0) (R)

N

Vo
Red

0

iing

Since y(y=yr,X(r.i+1) is a p-periodic solution of the adjoint
problem (7) we have arrived at the following result.

THEOREM | Consider the nonhomogeneous initial value problem (2)
with p-periodic coefficients (3).

(a) If the associated homogeneous initial value problem (6) has no non-
trivial ( forward) p-periodic solution (i.e. dimker(/ — X( p.0))=0),
then (2) has a unique ( forward) p-periodic solution. This solution
is given by the initial condition

p o1
Yo = (F= X(p.0)"> " X(poi+ Dh(i). (9)

=10
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(b) 1If the associated homogeneous initicl value problem (6) has a non-
trivial ( forward) p-periodic solution (i.e. dimker({ — X{( p,0)) > 0),
then (2) has a ( forward) p-periodic solution if and only if h(t) is
orthogonal to all (backward) p-periodic solutions of the adjoint
problem (7) (Le. if and only if (8) holds).

This theorem is a reformulation in terms of adjoint solutions of
Theorem | in [6]. In the first alternative (a). the unique (forward)
p-periodic solution of (2) is given by the variation of constants formula

(1) = {XO N XL+ DR for 1€ Z(1, + o),
X0 for t =0,

with x, given by (9). This formula can be written

x() = Gt iyh(i),
i=0

where the “Green’s function™ G:Z[0,+oc0) x Z[0, p—1] is defined
given by

Guni (= X(p.0) ' X(p.i+ 1)+ X(r.i+ 1) for0<i<u,
a1 =

(I—X(p.0) ' X(p,i+ 1) for0<i<i<p-1.
Under the assumption that there exist no nontrivial p-periodic

solution of the homogencous initial value problem (6). ie. that
dim ker(/— X{ p.0)) =0, the "solution” operator

G: S; — S, (10)
defined by the Green’s function G(t.s), namcly by G(h)=
,p:(,] G(1,0)h(i), is linear, bounded and compact (since S; is finite

dimensional). For i ¢ SI+ x=G(h) is the unique (forward) p-peri-
odic solution of the nonhomogeneous initial value problem (2).

3 A GLOBAL BIFURCATION THEOREM

We are interested in the existence of (forward) p-periodic solutions
of periodically forced. nonlinear equations containing 4 parameter.
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Specifically, we will consider nonlinear equations of the form

X(t+ 1) = A(0)x(1) + AB()X(1) + h(t, A, x(1), 1€ Z[0. +oc), (11)

where

A,BEM, and AeR

and / is “higher order” in x, i.e.

h:ZxRx§ — S; is continuous;

[lA(z, A, x)|| = o(llx]]) near x = 0 uniformly on finite X intervals.

Here the norm |[-|| is defined by ||x||=(x,x)"? and Q is an open
neighborhood of x=01in S .

A “p-periodic solution pair™ of (11) is a pair (A\*,x*) € R x S,
such that x=x7(7) is a (forward) p-periodic solution of (11) with
A=A". A pair (\,0) is a p-periodic solution pair for all Ae R and
will be called a “trivial solution pair™. A solution pair (), x) for which
x#0 will be called a “nontrivial solution pair”. Let N;,L denote the set
of nontrivial p-periodic solution pairs of (11) and let cl(N;r) denote
its closure in S .

We assume (6) has no nontrivial p-periodic solution, i.e.

dim ker(7 — X(p.0)) = 0,

where X(1.y) is the fundamental matrix (4) associated with the coeffi-
cient matrix A(7). Then, as far as p-periodic solutions are concerned,
the nonlinear equation (11) is equivalent to the operator equation

x=ALx+g(\.x)

where L : b/; — SI; 1s the linear operator that maps x(r) to G(B()x(t))
and g: Q2 x R— S, is the nonlinear operator that maps (A,x) to
G(h(1. X, x(1))). Here G is the linear operator (10) defined by the
Green’s function associated with the coefficient matrix A(r). Because
G is a compact operator, it follows that L is compact and that g is
completely continuous (i.e. continuous and compact). Moreover, the
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assumption on A implies that ||g(X, x)|] = o(]|x||) near x =0 uniformly
on finite X intervals.

We are now in a position to apply a general global bifurcation
result of Rabinowitz [9]. To do this we nced to consider the charac-
teristic values A of the operator /., i.c. those values of A such that

x=ALx forsome0#xeS,.

By construction A is a characteristic value of L if and only if the
associated characteristic sequence 0 # x € S} is a nontrivial (for-
ward) p-periodic solution of the linear equation

x(t 4+ 1) = A(O)x(t) + AB(t)x(1), 1€ Z[0, + 00). (12)

v which case X will be called a “characteristic value of (12)” and x
its associated p-periodic “characteristic solution”. Let X(t, s, \) denote
the fundamental solution matrix associated with the coefficient
A(1) + AB(t). Note that X(1,s) above (and in the picvious section) is
the same as X(7,s,0). A characteristic value A is called “odd™ if the
dimension of associated space of characteristic solutions is odd, 1.c.
if and only if dim ker(I— X{ p,0, A)) is odd; if this dimension is equal
to one, X is called “simple”. The following result follows directly
from Corollary 1.12 in [9].

THEOREM 2 Suppose Mg#£ 0 is an odd characteristic value and A=10
is not a characteristic value of (12). Then ¢[(N,7) contains a continuum
¢ ; (i.c. u closed connected set) with the following properties:

(a) (A).0) & C;J
(b) C jeither connects 10 the boundary of R x Q) or contains a trivial

pair (X,0) € C /j Sfor some odd characteristic value A" # A.

Because part (a) implies the continuum C‘p+ intersects the set of
trivia! solutions, we say that (X, 0) is a “bifurcation point™. Part (b)
is referred to as the Rabinowitz Alternative. Because it implics that
the continuum ('; cither connects to the boundary of Rx Q or to
another bifurcation point (A", 0). the theorem is referred to as a
“global” bifurcation result. By “connects to™ is meant that there
exists a sequence of solution pairs in €7 that approaches the
boundary of R x €2 This includes the possibility that €, “connects
to oo™, ie. is unbounded m R x Sp‘. To be unbounded means that
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one of the components A or x in the pair (A, x) is unbounded for
pairs lying in C ;. Often in applications the second alternative in (b)
can be ruled out and Q = S;“, in which case alternative (b) implies
that there exists an unbounded continuum of nontrivial p-periodic
solutions that bifurcates from the trivial solution at A=2Xy. This
means that either the spectrum of A values or the amplitudes
from solution pairs on the continuum le i1s an unbounded interval
(or both).
As a special case, consider the nonlinear matrix equation

X

x(t+1)=P(t, \, x(0)x(t), 1€ Z0,+ oc0), (13)

where

for each 1 € Z[0, + 00) and A € R
P(s, A\, ) : 2 — M, is continuously differentiable. (14)

Here € is an open neighborhood of the nonnegative cone K=
{xe S5 x(1) >0 for 1 € Z[0, + 00)}. These types of equations arise
in population dynamics in which P is a projection matrix that maps
a population distribution vector x from one time step to the next;
see Section 4 below for an example. Write

P(t, ), x) = Po(t, \)x + r(1. X, x).

e A x) = O(lixll)  near x = 0 uniformly on finite X intervals,
and assume that Py is linear in A, so that
Py(t,A) = A(1) + AB(1). (15)

Then (13) has the form (11) and Theorem 2 applies to this problem.
In applications to population dynamics. one is interested in positive

solutions x(z). In order to obtain results concerning the positivity of

solutions on the continuum €}, we make two further assumptions:

if0<xe S[T solves (13), then
either x(¢) > 0 or x(1) =0 for all 1 € Z[0, + o) (16)
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and

there exists a simple characteristic value )y of (12)

whose associated characteristic p-periodic solution is

positive xu(t) > 0 and no other characteristic value

has a nonnegative characteristic p-periodic solution. )]

THEOREM 3 Assume (14-17). Suppose A=0 is not a characteristic
value of (12). Then the continuum C I‘f from Theorem 2 contains an
unbounded subcontinuum P such that (A, x) € P /{(Xo0,0)} implies
X s a positive p-periodic solution of (13).

Proof 1t follows from the local bifurcation result of [6] that, in a
neighborhood of the bifurcation point (g, 0), the continuum C;F of
Theorem 2 can be parameterized by x(¢)=exo(r)+ ¥(r,e) where
It =o(|e|) for ¢ small. Thus, locally near the bifurcation
point, C; consists of two subcontinua defined by £¢>0 and <0
respectively. From (i7) we see that the first of these subcontinua,
which we denote by P, contains, with the exception of the trivial
solution for ¢ =0, positive solutions. Because Aq is simple, Theorem
1.40 of [9] implies P, also satisfies the alternative (b) in Theorem 2.

First we argue that the set (continuum of) solutions x arising
from pairs on the continuum P; cannot leave the positive cone K
{except at the bifurcation point (Ay, 0)). If this were not the case,
then there would exisi 4 solution pair (X, x) with X' # )y and x’
lying on the boundary 0K of the cone K. By assumption (16), it
would follow that x’'=0. Moreover, since P, is a continuum there
would exist a sequence (MA,.x,) € P} with x,€K such that
(A X)) — (A, 0). Since S; 1s finite dimensional, we can assume
(without loss in generality) that the limit

X
n _y/ >0

m =
rr~+%!|.¥;x" -

exists. From x,= A, Lx, + g(\,, x,,) we obtain

. SV 03 1
lim —2. = Lim AL A g 2n) ]
R A vl fl]]

vi=XNLy',
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that is to say, \'# )y is a characteristic value with a nonnegative
characteristic solution y’ > 0. This is a contradiction to assump-
tion (17).

By the same argument, the second alternative in part (b) of
Theorem 2 is ruled out. This leaves us with the fact that the
continuum P; connects to the boundary of R x Q. Since 2 is an
open neighborhood of the cone K, it follows that P; must connect
to oo, i.e. be unbounded.

Theorems 2 and 3 are existence theorems. The stability of those
p-periodic solutions from the continuum C ; lying in a neighbor-
hood of the bifurcation point (Ay,0) is studied in [6]. where
conditions are given sufficient for an exchange of stability to occur
between the continuum of trivial solutions and the continuum C:

4 AN APPLICATION TO POPULATION DYNAMICS

The following system of three difference equations has been applied
to the dynamics of laboratory cultures of flour beetles:

x1(t+ 1) = bx3(1) exp[—ceax3(t) — cex1(1)],
Xao(t+ 1) = (1 — uy)x, (1),
0+ 1) = () exp[—cpax3 (0] + (1 — m)xs(1).

In these equations x;(z), x>(¢) and x3(r) are the number of larvae,
pupac and adult beetles at time 7 (the time unit is two weeks), ;< 1
and p, <1 are the larval and adult mortality probabilities (per unit
time):; the positive constants ce,, ¢e and cp, are the “cannibalism
coefficients” expressing mortality of eggs and pupae due to cannibal-
ism by adults and larvae: and »>0 is the larval recruitment rate
(per adult) in the absence of cannibalism. In order to study the
effects of a periodically fluctuating habitat on beetle dynamics, such
as 1n the experiments of Jillson [§], the assumption that cannibalism
rates are inversely proportional to flour volume was introduced into
this model in [2,7]. (This assumption has been validated in
laboratory experiments [2].) This modification results in the periodic
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system

TR >X’(’)J‘
xa(t+ 1) = (1 = )xi (1), (18)

xi(t+ 1) = bxs(0) exp {*&Xs(f) - Ce,'

x3(t+ 1) = x2(1) exp [~ :(p:) a(t)} + (1 = ) x3(2),
where 0 < v € S, is a positive p-periodic sequence with mean equal
to one. Only the case of period p=2 cycles is considered in [2,7]
(although the experiments in [8] were done for other periods as well).
We will consider a general integer period p and use the larval
recruitment rate as the bifurcation parameter. More exactly, we use
the bifurcation parameter

The system (18) is of the form (13) with

P(1, \. x)
0 0 (3#a/ (1 = ) + X) exp[—(cea/¥(1))x3(1)
_ = (ca/v(2))x1{1)]
I — 0 0
. 0 exp|—(cpu/v(1)x3(1)] P — p,

The linear part of this projection matrix

0 0 %.u'u/“ ‘,U'l)+ A

Po(t,A) = 1—m O 0
0 1 1 — py
0 0 %/lu/(]—m) 0 0 1
=l 1l-=wm O 0 +A0 0 O
0 1 1 — py 0 0 0

1s a constant Leslie matrix (and hence p-periodic). Clearly assump-
tions (14) and (15) are satisfied.
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Consider assumption (16). Suppose that x(r) > 0 is a nonnegative p-
periodic solution of (18). If x3>0 at some ¢’ € Z[0, + o), then from
(18) we find that x; and x, are positive at 1’ + 1 and hence x, x», and
x3 are positive for all 1 > 1/ + 2. We conclude that if vz is positive at
some time, then x is positive for all 1 € Z[0, 4 co). If, on the other hand,
x> >0 at some t' € Z[0, + o), then from (18) we find that x3>>0 at
t'+1 and, as just shown, this in turn implies x is positive for all
1€ Z[0,+00). Finally, if x;>0 at some ¢ €Z[0,+0c0), then
from (18) we find that x>0 at 1’ + 1 and, as just shown, this implies x
is positive for all 1€ Z[0, 4+ o0). We conclude, then, that unless x=0
for all r € Z[0. + 0o) it must be the case that x > 0 for all ¢ € Z[0, 4 c0).

This verifies assumption (16) for the system (18).
o i o in Thonram Y Ao ~ PP R |
The final umptions in Theorem 2 con the noutrivial

X+ 1) 0 0 A /(=) + AN X0
(»’(2(1‘Jr l)\’ = (] —m 0 0 Xj(f) . (19)
\X3{7+ 1) \ 0 I — g J \xa)/

Since the coefficient matrix 1s irreducible and primitive (its fourth
power is strictly positive), the Perron/Frobenius theorem implics that
it has a strictly dominant, positive, simple eigenvalue £>0 with a
positive eigenvectlor

and that there exists no other nonnegative eigenvector (for any
cigenvalue). This means that the positive periodic solutions of the
linear equation (19) can be obtatned only when £ equals 1 and in this
case the solutions are the cquilibrium cigenvector solutions given by
1 1

the associated positive eigenvectors. The dominant eigenvalue equals |

ifandonly if A= Xy = %[l“/(l — 11). For this {(and only for this) value
of A docs (12) have a positive p-periodic solution. This proves that
assumption (17) holds for the system (1§).

Finally. when A—0. the dominant cigenvalue of the coetticient
matrix in (19) is less than 1. Consequently all solutions of (19) tend
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to 0 as t— + oo and in particular none are p-periodic. This implies
that A=0 is not a characteristic value.

Theorem 3 now applies to the system (18). It follows that there
exists an unbounded continuum of positive p-periodic solutions that
bifurcates from the trivial solution at A =Ju,/(1 — ). i.e. at b=

Hal(1 = ).

The local analysis given in [7] for the case p=2 shows that the
positive period-2 solutions on the bifurcating continuum exists for
b > p,/(1 — ;) and are (locally asymptotically stable). The direction
of bifurcation and local stability for periods p>2 have not been
studied for this model, although the general results in [6] show that
the usual exchange of stability principle holds. Stability (or instabil-
ity) results for positive periodic solutions outside a neighborhood of
the bifurcation point have not been obtained.
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