JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 33, 443448 (1971)

A Uniqueness Criterion for Harmonic Functions
Under Nonlinear Boundary Conditions

J. M. CusHing

Department of Mathematics, University of Arizona, Tucson, Arizona

Submitted by Richard Bellman

1. INTRODUCTION

Consider the problem

du=u,, +u, =0 in DDOR,
(1.1)
ou
=0 on (j, %::h(s)f(u) on C,

where R, D are a regular regions {10] in x, y space and where the boundary
OR = C, + C, . Here s is arc length along 9R, A(s) is an integrable function
of s defined on C,, f is a prescribed function of u such that f(0) = 0 (more
will be assumed about f below), and du/on is the derivative of u in the direction
of the outward normal to C, . By a solution to this problem we shall mean a
function « € C¥ D) which satisfies (1.1).

It is well known [3] that solutions to (1.1) may not be unique, even for the
linear problem f(u) = u. For example, if R is the unit disk, C, = 4R, and
h(s) = m = const., then (1.1) has solutions in polar coordinates r, § given by
r™(ky sin m6 - ky cos m) for m = positive integer and k, , k, equal to any
constants; moreover, these are the only solutions for a given m [3]. Notice,
however, that there is at most one solution (up to a constant multiple) which
possess a given set of nodal lines. Martin [6] has extended this remark to
more general linear problems by showing that if f = u in (1.1) then there
cannot exist two nonconstant linearly independent solutions %, , , for which
the ratio u,/u, remains analytic in D. Martin remarks further (without proof)
that this condition on u, , u, is equivalent to requiring that &, have a nodal line
wherever #, does. Similar results have been derived concerning various types
of uniqueness for the nonlinear problem (1.1) under suitable restrictions on
f provided A = f(u5)/f(4,) remains analytic in R (cf. Martin [6, 7, 8, 9],
Dunninger [4, 5], Cushing [1, 2]). The conditions that A remain analytic
is the nonlinear analog of Martin’s theorem for the linear problem and may
be interpreted in terms of equipotential lines of #, (see Lemma 3.2 below).
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This suggests we formulate uniqueness questions for (1.1) in terms of
equivalence classes of the set of harmonic functions on D where u, ~ u,
if and only if the nodal lines #; = 0, , = 0 coincide (we assume in Theorem
2.1 that # = 0 is the only zero of f(u)). We denote by E(u,) the equivalence
class of #, under this equivalence relation. In Lemmas 3.1, 3.2 we show
explicitly the relationship between E(u,) and the ratio A under certain condi-
tions of f. Lemma 3.2 allows certain theorems of Martin, Dunninger and
the author to be stated as uniqueness theorems within equivalence classes;
e.g., if f = u, Martin’s theorem states that two solutions belonging to the
same equivalence class are linearly dependent. Our main purpose in this
paper is to prove for the nonlinear problem (1.1) an analog of Martin’s
result for the linear problem by showing the uniqueness (up to a sign) within
equivalence classes of nonconstant solutions to (1.1) provided f is an odd,
monotonic function of u possessing an inflection point at # = 0 of a definite

type.

2. REesuLTs

The following theorem contains our main result.

THEOREM 2.1. Suppose f = f(u) satisfies the following conditions as a
Junction of u:

(@) fis n -+ 2 times continuously differentiable for for some n > 1;
(b) f®(u) = d*fldu* +# 0 at u = 0 for some 1 < k < n;

(¢) f(u) = — f(— u) for all u; @1
(d) fW(u) > 0 for all u + 0;
(e) f3(w) <O for all u>0.

If u, , u, are nonconstant solutions to (1.1) belonging to the same equivalence
class, then u, = 4-u, on R.

The theorem is proved by a sequence of lemmas given in Sec. 3. Lemma 3.2
implies that for two solutions u, , u, satisfying u, € E(x,) we have A, A-! both
C'in D. Two applications of Lemma 3.3 (obtained by interchanging the roles
of u, and u,) yield the inequalities |#, | << |wuy| and |u, | < | % |; thus,
| %, | =] u,| and the theorem follows.

As an example, this theorem applies to the problem obtained from f = sin «
(at least for solutions satisfying — 7/2 << u < m/2) studied by Martin in
[8, 9] (and Dunninger in [4]). This result also bears an interesting relationship
to the local uniqueness theorems of the author in [1] where it is assumed that
fu) f3(u) <O for all u.
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Notice, finally, that for problems (1.1) with f V(u) < 0, u # 0, we may
replace h(s) by — h(s) and f(x) by — f(u) and apply Theorem 2.1.

3. THREE LEMMAS

It is clear that if the ratio u;/u, of two harmonic functions is an analytic
function in D, then the nodal lines of #, must coincide with nodal lines of #, .
The converse of this statement (which Martin mentions in [6] without proof)
is not immediately obvious; therefore, we offer a proof.

Lemma 3.1. Let u,, u, be two nonconstant functions which are harmonic
in an open region D. Then u,[u, is analytic in D if and only if each nodal line
of uy in D cotncides with a nodal line of u, in D. Thus, both u,ju, and u,/u,
are analytic in D if and only if u, € E(u,).

We have only to prove the converse. Certainly #,/u, is analytic at those
points in D where #, =% 0. In order to consider points (%, , ¥,) € D for which
u, = 0 we develop a canonical representation for a harmonic function u in the
neighborhood of this point. The family of nodal lines passing through
(%9 , ¥o) consists of a finite number (say n > 1) of analytic curves whose
slopes are spaced 2n/n radians apart (cf. Walsh [11]). Assume without loss of
generality that x, = y, = 0 and that none of the nodal lines has a vertical
slope; this can always be achieved by a translation and/or rotation of coordi-
nate axes. Then the nodal lines may be represented by y = g,(x)
(¢ =1, 2,..., n) where g, is an analytic function of x, and we may write

(s, ) = U ) [T [ — 26, 6.0

where U is analytic at (0, 0). To see this, let £ =y — g,(x), n = x; under
this proper change of variables u becomes an analytic function of £, 5 which
vanishes for ¢ = 0 and, hence, u = £U* where U* = U*(¢, 9) is analytic.
Consequently, u = [y — g,(x)] U,(x, y) where U, is analytic and vanishes
for y = ga(x); n repetitions of this argument clearly leads to (3.1). Moreover,
if v is the harmonic conjugate of u such that ©(0, 0) = 0, then u + v = 27h(z),
% = x 4 1y, where h(z) is analytic and #(0) = 0 (Walsh [11], pg. 269) and it
follows that the lowest order terms appearing in the power series development
of u are of order . This implies U(0, 0) 5= 0in (3.1). Applying the decomposi-
tion (3.1) to u, , u, satisfying the hypotheses of the theorem we get

u1=U1H(y——g,-), ”2=U2H(y—gi)

i=1 i=1
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where Uy (0, 0) 5= 0, Uy(0,0) % 0 and 7 > m. Thus,

n

u U
= = H (J’—'gi)‘gi

Uy i=m+1

is analytic at x = y = 0. The second statement of the lemma is an immediate
consequence of the first.

Lemma 3.2. If f(u) is n + 2 times continuously differentiable as a function
of u satisfying f¥(0) =0, 0<k<n— 1, f"N0)#0 where n > 1 and
if u = Qs the only zero of f on the range of two harmonic functions u,, u, on D,
then X = f(u,)|f (1) is C* as a function of x, y in D provided u,fu, is analytic in
D. Thus, u, € E(u;) if and only if both X and A~* are C* in D.

This follows immediately from the preceding lemma and the expression

N = ( Uy )"f M(0) + R(uy)
u /) f(0) + R(w)
where R is the remainder term in Taylor’s expansion of f(«).
Lemma 3.3. Let f(u) satisfy the hypotheses of Theorem 2.1. If u, , u, are

nonconstant solutions to (1.1) such that X =f(w,)[f (uy) ¢s C* in D, then
| %] <|uy| on D.

To prove this lemma we begin with the integral identity

Ou,

fas,\(fz%‘g—fl = )ds—EB == fs(Q-{-/\fZAul—/\fIAug)dxdy,
(3.2)

which is a special case of a generalized Green’s identity introduced by
Martin in [6]. Here we have set

O =7Ip2 — D p,py 4+ Xf L2 + fPg2 — I Pgugp + N Pg, (3.3)

where

_ ouy oy
b= o’ g =

» o Ji=fw)
and

df (u,) .
P=" (=1,2)

This identity is a straight forward application of the divergence theorem
provided the divergence theorem is valid on Sand Ais Cin S + 4S. Treating
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O as a quadratic form in p;, ¢; with continuous coefficients, one can show
without difficulty (by examining the descending principal minors) that Q
is positive definite if and only if

N(fO —fMfP <0 on S, (34)
f@~0 on S (3.5)

Condition (3.5) holds because of (2.1d). Assume | #; | > | u, | at some point
(%o » ¥o) € D; we now search for a subregion S of D on which (3.4) holds.

Since condition (2.1c) implies %, , u, are solutions to (1.1) if and only if
— u; , — 1, are also solutions, we may assume without loss of generality that
u; > uy >0 at (%, yy); consequently, S ={(x,y)eD:y; >u, >0} 1is a
non-empty, open subset of D. The boundary dS consists of arcs I'; on ¢R,
arcs I', on the (analytic) nodal lines u, — u; = 0 (u, 7= 0), andfor arcs I
on the (analytic) nodal lines #; = u, = 0 (A € C* = u, € E(w;)) and, hence, S
is a regular subregion {10] of R over which the divergence theorem is valid
[10]. Thus, (3.2) is valid on S. Since condition (3.4) also holds on S, Q is
positive definite and 4 > 0. Clearly, for two solutions %, , u, to (1.1) the
integrand of B vanishes on Iy, I'; and as a result

_ (uy — u,) ~
B = rzfl — ds << 0,

since f; > 0 on S and &(u; — u,)/on < 0 where n is the outwardly directed
normal on I'y. Thus, (3.2) implies 4 = B = 0 and the definiteness of Q
implies the contradiction that u, , u, are constant in S (and, hence, R). We
conclude that no point exists in D for which | u, | > |u, |5 1e., |4 | < | uy |
on D and the lemma is proved.
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