ALGEBRA QUALIFYING EXAMINATION

AUGUST 2023

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers.

- 1A. Let V be a finite dimensional vector space over a field k, and let T be a linear map on V. Suppose $f \in k[x]$ is a polynomial such that f(T) = 0. Suppose further that f factors over k, $f = h_1 \cdot h_2$ with $h_1, h_2 \in k[x]$ relatively prime. Set $W_1 = \ker h_1(T)$ and $W_2 = \ker h_2(T)$. Prove that W_1 and W_2 are T-invariant subspaces of V, and $V = W_1 \oplus W_2$.
- 1B. Let V be a finite-dimensional complex vector space, and $A: V \to V$ be a linear map such that $A^2 = A$. Prove that there is a basis in V in which the matrix of A is diagonal with diagonal entries 0 or 1.
- 2A. Show that if G is a group of order $2 \cdot 3 \cdot 5 \cdot 67$, then G is solvable.
- 2B. Prove that there are no simple groups of order $11 \cdot 2^n$, where $n \in \mathbb{N}$.
- 3A. Suppose E is a finite Galois extension field of F, and suppose F < K < E with K/F Galois. Suppose |Gal(E/K)| = 5 and $Gal(K/F) \cong S_3$. Prove that |Gal(E/F)| = 30. Further, prove there exists a Galois extension F < L < E with [L:F] = 2, and three fields W such that F < W < E, each not Galois, and [W:F] = 3.
- 3B. Find the Galois group over \mathbb{Q} of the polynomial $27x^3 63x + 7$.
- 4A. Let E be a field with 81 elements. Give all the subfields, how many elements $\alpha \in E$ satisfy $E = \mathbb{F}_3(\alpha)$, and determine the number of elements in E that generate E^* as a group.
- 4B. Let $R = \mathbb{C}[x,y]/(xy-1)$. Find all units in R.
- 5A. Prove the following.
 - (1) Let R be a ring with unity. Prove that the set of $n \times n$ matrices $M_n(R)$ with entries in R is noncommutative when $n \geq 2$.
 - (2) Suppose R is a semisimple commutative ring with unity. Show that R is a direct sum of fields.

5B. Set

$$A = \left(\begin{array}{cccc} 2 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Let $R = \mathbb{R}[x]$ and $M = \mathbb{R}^4$. Define an R-module structure on M by setting p(x)v = p(A)v. Find the invariant factors of M, i.e. elements $d_1, \ldots, d_n \in R$ such that $d_1 \mid \cdots \mid d_n$, and $M \cong \bigoplus_{i=1}^n R / (d_i)$.