GEOMETRY/TOPOLOGY QUALIFYING EXAM

AUGUST 2023

Please show all of your work. GOOD LUCK!

- (1) Find a conformal mapping from the first quadrant {z = x + iy ∈ C : x > 0, y > 0} to the disk {z : |z| < 1}.
 (2) Let the mapping F : ℝ⁴ → ℝ² be given by the formulas F(x¹, x², x³, x⁴) =
- (2) Let the mapping F: R⁴ → R² be given by the formulas F(x¹, x², x³, x⁴) = (x¹x²x³x⁴, x¹ + x² + x³ + x⁴).
 a) Prove that F⁻¹(1, 1) is a smooth submanifold of R⁴. What is its dimension?
 b) Find all values of a and b for which the implicit function theorem guarantees that F⁻¹(a, b) is a smooth submanifold of R⁴.
- (3) let $X = S^2 / \sim$ where $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, and the equivalence relation is $(1, 0, 0) \sim (-1, 0, 0); (0, 1, 0) \sim (0, -1, 0).$ Find $\pi_1(X)$ and $H_2(X)$.
- (4) Let

$$X_{(x^1,x^2,x^3,x^4)} = x^2 \frac{\partial}{\partial x^1} - x^1 \frac{\partial}{\partial x^2} + x^4 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^4}$$

be a vector field in \mathbb{R}^4

a) Show that X is tangent to the sphere $S^3 = \{x \in \mathbb{R}^4 : |x|^2 = 1\}.$

b) Let $\phi(t)$ be the one-parameter group of diffeomophisms of S^3 that is generated by X. Compute the diffeomorphism $\phi(\pi)$.

- (5) Let ω be a *closed* two-form on the four-dimensional sphere S^4 .
 - a) Prove that the form $\omega \wedge \omega$ is exact.
 - b) Compute

$$\int_{S^4} \omega \wedge \omega.$$

Justify your answer.

(6) Let

$$E = \{ (z_1, z_2) \in \mathbb{C}^2 : z_1 z_2 = 1. \}$$

Define a mapping

$$\pi: E \to \mathbb{C}^* \ (= \mathbb{C} \setminus \{0\})$$

by the formula

$$\pi(z_1, z_2) = \frac{z_1}{z_2}$$

Prove that π is a covering and find its group of deck transformations