GEOMETRY/TOPOLOGY QUALIFYING EXAM

JANUARY 2024

Please show all of your work. GOOD LUCK!

1) Evaluate the following integral

$$
\int_{0}^{\infty} \frac{\ln x}{4+x^{2}} d x
$$

Justify all steps.
2) Let the mapping $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by the formulas

$$
F(w, x, y, z)=\left(w^{2}+x^{2}+y^{2}+z^{2}, w^{2}+x^{2}-2 y^{2}-3 z^{2}\right) .
$$

Find all values of $a>0$ such that $F^{-1}(a, 1)$ is a smooth two-dimensional submanifold of \mathbb{R}^{4}.
3) Evaluate

$$
\int_{S}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)
$$

where S is the surface in \mathbb{R}^{3} given by the equation

$$
x^{2}+y^{4}+z^{6}=5 .
$$

4) The boundary of a Möbius strip M is a circle: $\partial M=S^{1}$. A Klein bottle K can be viewed as a union of two Möbius strips, M_{1} and M_{2}, with their boundary circles identified (by the identity map). Introduce open subspaces $U_{1} \supset M_{1}$ and $U_{2} \supset M_{2}$ of K and use this decomposition of the Klein bottle to compute its integer homology via the Mayer-Vietoris sequence.

Be sure to compute the homology in all degrees.
5) Compute the fundamental group of a two-sphere with three of its points identified.
6) Recall, that for $A \subset X$ with the inclusion map $i: A \rightarrow X$, a map $r: X \rightarrow A$ is a retraction if $r \circ i=i d_{A}$.

Let X be a two-dimensional disk with two of its distinct boundary points identified, and let $A=\partial X$ be its boundary (a bouquet of two circles). Is there a retraction of X to ∂X ?

