
1. BASIC CONCEPTS

Where We Are Going | and Why
We will develop ways of analyzing ordinary di¯ erential equations that take
full advantage of the power of calculus and technology. We do this by treating
topics from graphical, numerical, and analytical points of view. Because each
of these points of view can at times give incomplete information, we always
need to compare our results for consistency. The strategies presented in this
book will empower you to correctly analyze solutions of a di¯ erential equation,
even when those solutions are not obtainable as analytical expressions.

In this chapter, we introduce these three points of view by considering
di¯ erential equations of the form

dy

dx
= g(x):

We start with a brief introduction, de° nitions, and examples, which make use
of prior knowledge of antiderivatives. Then we spend the next two sections
illustrating graphical techniques, including slope ° elds and isoclines. These
techniques often let us discover many properties of the solution of a spe-
ci° c di¯ erential equation by simply analyzing the di¯ erential equation from
a graphical point of view. We end this chapter with a discussion of Taylor
series, which are especially useful when solutions are given by integrals that
do not have simple antiderivatives.

The purpose of this chapter is to illustrate graphical, numerical, and ana-
lytical approaches in the familiar setting of antiderivatives. We want to make
sure you have a ° rm foundation in these approaches so you can quickly grasp
the new ideas in subsequent chapters.

1.1 Simple Di�erential Equations and Explicit So-

lutions

Ever since the ideas of calculus were developed by Newton, Leibniz, and others
in the seventeenth century, people have been using di¯ erential equations to
describe many phenomena that touch our lives. Di¯ erential equations are
the most common mathematical tool used for the precise formulation of the
laws of nature and other phenomena described by a relationship between a
function and its derivatives. In this book you will see many examples of such
relationships.

The simple de° nition of a di¯ erential equation is an equation that in-
volves a derivative. Thus, many di¯ erential equations are solved in beginning
calculus courses, perhaps without anyone stating it.
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Two Basic Examples=)

We start with a familiar example.

Example 1 : Parabolas

Consider the problem of ° nding the most general antiderivative of the function
x. If we call this antiderivative y(x), then the derivative of y is x; that is, y
satis° es the di¯ erential equation

dy

dx
= x: (1.1)

Because any antiderivative of x may be written as

y(x) =
1

2
x2 + C; (1.2)

where C is an arbitrary constant, it seems reasonable to call (1.2) solutions of
our di¯ erential equation (1.1). Because of the arbitrary constant, we have an
in° nite number of solutions, a di¯ erent one for each choice of C (collectively
called a family of solutions). Some of these solutions are graphed in Figure
1.1 (upward opening parabolas) where we notice that the role of the arbitrary
constant is to determine the vertical position. All solutions of this di¯ erential
equation have the same general shape, and any two solutions will di¯ er from
each other by a vertical translation. Thus, two di¯ erent solutions will notVertical trans-

lation intersect.1 2

empty

Figure 1.1 Some solutions of dy=dx = x

We now look at another familiar example, one to which we will return
frequently in this chapter.

Example 2 : The Natural Logarithm Function

1If two functions y1(x) and y2(x) have a point x0 in common, so that y1(x0) = y2(x0),
we say that y1(x) and y2(x) intersect, touch, or cross, at x = x0.
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We consider the problem of ° nding the most general antiderivative, y(x), of
the function 1=x | that is, ° nding solutions of the di¯ erential equation

dy

dx
=

1

x
: (1.3)

Because all antiderivatives of 1=x may be written as

y(x) = ln jxj + C; (1.4)

or

y(x) =

¡
lnx + C if x > 0;
ln(² x) + C if x < 0;

(1.5)

where C is an arbitrary constant, these are our solutions. Again, because of
the arbitrary constant, we have a family of solutions. Some of these solutions
are graphed in Figure 1.2, where we notice again that the role of the arbitrary
constant is to determine the vertical position. If x > 0 all solutions of this
di¯ erential equation have the same general shape, and any two solutions will
di¯ er from each other by a vertical translation. The same is true for x < 0.Vertical trans-

lation 2

empty

Some solutions of dy=dx = 1=x

Figure 1.2

De�nitions and Comments=)

These are two of many examples of di¯ erential equations covered in calculus.
All problems where we found the inde° nite integral (or antiderivative) of a
function, g(x), could have been formulated as ° nding y(x) as a solution of

dy

dx
= g(x): (1.6)

The solutions of (1.6) all have the form

y(x) =

Z
g(x) dx + C; (1.7)
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where
R

g(x) dx is any speci° c antiderivative of g(x).2 The arbitrary constant
C indicates that we have an in° nite number of solutions, related to each other
by a vertical translation.Vertical trans-

lation Before developing any methods for ° nding solutions of di¯ erential equa-
tions, we give some formal de° nitions which will be helpful later when we
consider more complicated situations.

Di¯ erential equations such as (1.1), (1.3), and (1.6) are called ° rst or-
der di¯ erential equations, because the ° rst derivative is the highest one that
occurs in each equation. Thus we have

De® nition 3 : A first order ordinary differential equation is an
equation that involves at most the ® rst derivative of an unknown
function. If y, the unknown function, is a function of x, then we
write the ® rst order di� erential equation as

dy

dx
= g(x; y); (1.8)

where g(x; y) is a given function of the two variables x and y.3

Comments about First Order Di� erential Equations

§The right-hand side of (1.8) may contain x and y explicitly, for example,
x2 +y2. However, in this chapter we will consider the case where g(x; y)
is a function of x alone.

§If y is a function of x; then x is called the independent variable and y
is called the dependent variable.

We previously noted that (1.2), (1.4), and (1.7) are solutions of (1.1),
(1.3), and (1.6), respectively. We know this because if we di¯ erentiate these
functions and substitute the result into the proper di¯ erential equation, we
obtain an identity. These solutions are called explicit because they have the
dependent variable, y, given solely in terms of the independent variable, x.
This prompts our second de° nition.

De® nition 4 : An explicit solution of the ® rst order ordinary dif-
ferential equation

dy

dx
= g(x; y) (1.9)

is any function y = y(x); with a derivative in some interval a < x < b,
that identically satis® es the di� erential equation (1.9).

Comments about Explicit Solutions

§Because an explicit solution has a derivative in the interval a < x < b,
it must be continuous in that interval. (Why?) An explicit solution can
never have a vertical tangent. (Why?)

2In calculus it is customary to have the symbol
R
g(x) dx include the arbitrary constant

C. Here we add the constant explicitly to emphasize geometrical ideas.
3Even though all our examples in this chapter are of the form dy=dx = g(x), we use

dy=dx = g (x; y) in all our de®nitions so that they also apply to subsequent chapters.
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§An explicit solution may contain an arbitrary constant. If it does, we
have an in° nite number of solutions, called a family of explicit so-
lutions. If it does not contain an arbitrary constant, we have a par-
ticular explicit solution. Often particular explicit solutions are
just called particular solutions.

§The graph of a particular solution is called a solution curve of the
di¯ erential equation.

The explicit solutions of the three di¯ erential equations mentioned so far
all contain an arbitrary constant, so they are families of explicit solutions.
This constant may be determined if we know the value of the solution at
some speci° c value of x.

Thus, on the one hand, if we specify that the solution (1.4), y(x) = ln jxj+Examples of ex-
plicit solutions C, of the di¯ erential equation (1.3) must pass through the point (² 1; 0), the

value of the constant C must satisfy 0 = ln j² 1j+C, so C = 0. This appears to
give the particular solution ln jxj. However, the graph of ln jxj consists of two
disconnected branches (one with x < 0, and the other with x > 0) and so is
not continuous, whereas any particular solution must be continuous. Because
our initial point (² 1; 0) is given on the left branch of ln jxj, the particular
solution that passes through (² 1; 0) is ln jxj on the interval ² 1 < x < 0;
that is, ln (² x). Its graph is shown in Figure 1.3.

On the other hand, if we specify that the solution of (1.3) is to pass through
the point (e; 6), the value of C must satisfy 6 = ln jej + C, so C = 5. With
similar reasoning to that just used, the particular solution passing through
(e; 6) is ln jxj + 5 on the interval 0 < x < 1; that is, lnx + 5. Its graph is
also shown in Figure 1.3. If we look at Figure 1.2 through these eyes, we see
that it represents 14 particular solutions, not 7, as a cursory glance might
indicate.4

empty

Graphs of particular solutions of dy=dx = 1=x through (² 1; 0) and (e; 6)

Figure 1.3

4A function that merely satis®es a di� erential equation is sometimes called an integral
of the di� erential equation. A solution is an integral that is also continuous. Thus, ln jxj+C
is an integral of dy=dx = 1=x but is not a solution. Figure 1.2 shows 7 integral curves and
14 solution curves.
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The problem of ° nding a solution of a di¯ erential equation that must pass
through a given point | such as (² 1; 0) or (e; 6) in the case of (1.3) | is
called an initial value problem, and the point is called an initial value,
initial condition, or initial point.Initial

condition

Writing Solutions As Integrals=)

There is another way of expressing the solution of (1.3) when an initial point
is speci° ed as (x0; y0). If we use the fact that

R x

x0
g(t) dt is an antiderivative

of g(x), our solution in (1.4) may also be expressed as

y(x) =

Z x

x0

1

t
dt + C; (1.10)

if x0 and x have the same sign. If we substitute x = x0 into (1.10), use the
initial condition y(x0) = y0; and the fact that

R x0

x0
1=t dt = 0 (if x0 6= 0), we

obtain the value of C as C = y0. Thus (1.10) can be written as

y(x) =

Z x

x0

1

t
dt + y0:

From this example we see that the explicit solution of the initial value
problem dy

dx = g(x); y(x0) = y0, can be written in the formImportant
point

y(x) =

Z x

x0

g(t) dt + y(x0) =

Z x

x0

g(t) dt + y0; (1.11)

if g(t) is bounded for t between x0 and x. This form of the solution is partic-
ularly useful when we are unable to evaluate the integral in terms of familiar
functions. We demonstrate this in the following example.

Example 5 : The Error Function

An important function, used extensively in applications in probability theory
and di¯ usion processes, is the solution of the di¯ erential equation

dy

dx
=

2p
�

e� x2

(1.12)

subject to the initial condition that

y(0) = 0: (1.13)

This example will recur throughout this chapter.
Explicit solutions of (1.12) can be written as

y(x) =
2p
�

Z
e� x2

dx + C: (1.14)

The usual way to evaluate the constant C so (1.13) is satis° ed is to substitute
x = 0 and y = 0 into the solution (1.14) and solve for C. However, the
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integral in (1.14) cannot be expressed in terms of familiar functions, so this
usual way to evaluate C does not work. To bypass this problem we change
the form of our solution to the one given in (1.11) and use the fact that x0 = 0
and y0 = 0 to obtain

y(x) =
2p
�

Z x

0

e� t2 dt:

This explicit solution is called the Error Function, and it is usually denoted
by erf (x); that is,

erf (x) =
2p
�

Z x

0

e� t2 dt: (1.15)

We might ask how we can determine the graph of this function from its
form in (1.15).5 One way would be to construct a table of values of (x; erf (x))
by using a numerical method of approximating the integral for speci° c choices
of x (see Exercise 2 on page 7). However, numerical techniques require consid-
erable computation to plot enough points to be con° dent of the shape of the
graph (see Exercises 3 and 4 on page 8). For that reason, in the next sections
we develop methods for obtaining qualitative properties of the graph of the
solution of our di¯ erential equation directly from the di¯ erential equation. 2

Exercises

1. Solve each of the following ° rst order di¯ erential equations.6 Sketch the
explicit solution for three di¯ erent values of the arbitrary constant C.
Then ° nd the speci° c value of C and the formula for y(x) giving the
particular explicit solution that passes through the given point P .

(a) dy=dx = x3 P = (1; 1) (g) dy=dx = 1=x P = (² 1; 1)
(b) dy=dx = x4 P = (1; 1) (h) dy=dx = 1=(1 + x2) P = (1; � =4)
(c) dy=dx = cosx P = (0; 0) (i) dy=dx = 1=[x(1 ² x)] P = (2; 1)
(d) dy=dx = sinx P = (� ; 2) (j) dy=dx = lnx P = (1; 1)
(e) dy=dx = e� x P = (0; 1) (k) dy=dx = x2e� x P = (0; 1)
(f) dy=dx = 1=x2 P = (1; 1) (l) dy=dx = e� x sinx P = (0; 1)

2. The Error Function. The purpose of this exercise is to graph the
Error Function de° ned by (1.15), namely,

erf (x) =
2p
�

Z x

0

e� t2 dt;

by constructing a table of values of (x; erf (x)).

(a) What is the value of erf (0)?

(b) What is the relationship between erf (x) and erf (² x)?

5You might also ask how we were able to draw the graph of the function y = lnx
in the previous example. This was done by a computer/calculator. So how did the
computer/calculator do it? It constructed a table of numerical values. If the com-

puter/calculator had the ability to construct functions of the sort
R x

0
g(t) dt, we could

use it to graph erf (x). Not many computers/calculators have this facility built in.
6The expression \solve the di� erential equation" is synonymous with \®nd the explicit

solution of the di� erential equation."

SIMPLE DIFFERENTIAL EQUATIONS AND EXPLICIT SOLUTIONS 7



(c) Use a computer/calculator program that performs numerical inte-
gration to obtain approximate values (say to 3 decimal places) for
erf (x) at x = 1; 2, and 3. Use this information, and the results
from parts (a) and (b), to plot erf (x) in the interval [² 3; 3]. How
con° dent are you that the graph you have is fairly accurate?

(d) Now repeat part (c) for x = 0:5, 1:5, and 2:5. Did this change the
accuracy of your previous graph for erf (x)?

(e) Now repeat part (c) for x = 0:25, 0:75, 1:25, and 1:75. Did this
change the accuracy of your previous graph for erf (x)?

(f) What do you think happens to erf (x) as x ! 1?

3. The Fresnel Sine Integral. Using (1.11), write down an integral that
represents the solution of the initial value problem

dy

dx
=

r
2

�
sinx2; y(0) = 0:

This solution, known as the Fresnel Sine Integral and denoted by S(x),
cannot be expressed in terms of familiar functions.

(a) What is the value of S(0)?

(b) What is the relationship between S(x) and S(² x)?

(c) Use a computer/calculator program that performs numerical in-
tegration to obtain approximate values (say to 3 decimal places)
for S(x) at x = 2 and 4. Use this information, and the results
from parts (a) and (b), to plot S(x) in the interval [² 5; 5]. How
con° dent are you that the graph you have is fairly accurate?

(d) Now repeat part (c) for x = 1, 3, and 5. Did this change the
accuracy of your previous graph for S(x)?

(e) Now repeat part (c) for x = 0:5, 1:5, 2:5, 3:5; and 4:5. Did this
change the accuracy of your previous graph for S(x)?

(f) What do you think happens to S(x) as x ! 1?

4. The Sine Integral. Using (1.11), write down an integral that rep-
resents the solution of the initial value problem dy

dx = g(x); y(0) = 0;
where

g(x) =

¡
sinx=x if x 6= 0
1 if x = 0

:

This solution, known as the Sine Integral and denoted by Si(x), cannot
be expressed in terms of familiar functions. Use the ideas from Exercise
3 to graph the solution of this di¯ erential equation. What do you think
happens to Si(x) as x ! 1?

5. Find the family of solutions for each of the di¯ erential equations dy
dx = ex

and dy
dx = ² e� x: Graph these two families of solutions on one plot, using

the same scale for the x- and y-axes. What do you notice about the
angle of intersection between these two families of solutions?7 Could you
have seen that directly from the di¯ erential equations, without solving
them?

7The angle of intersection between two curves at a point is the angle between the tangent
lines to the curves at that point.
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6. Write down some odd functions and ° nd their antiderivatives.8 What
property do these antiderivatives share? Make a conjecture that starts:
The antiderivative of an odd function is always : : :. Prove your conjec-
ture.

1.2 Graphical Solutions Using Calculus

In the previous section we used antiderivatives to determine the behavior of
solutions of dy=dx = g(x) by ° nding the explicit solution. In this section we
discover that there is a wealth of information available about the behavior of
such solutions by considering the di¯ erential equation itself without ° nding
the explicit solution.

Example 6 : The Natural Logarithm Function

We return to the second example,

y0 =
dy

dx
=

1

x
; (1.16)

where 0 indicates di¯ erentiation with respect to x. Look at the 14 particular
solutions in Figure 1.2. They were sketched directly from the functions lnx+C
for x > 0, and ln(² x)+C for x < 0, for di¯ erent values of C. Based on Figure
1.2, we ask the following questions:

1. Monotonicity.9 Where are the solutions increasing and where are they
decreasing?

2. Concavity. Where are the solutions concave up and where are they
concave down?

3. Symmetry. Are there any symmetries?

4. Singularities.10 Is it possible to start on a solution curve where x < 0
and proceed along this curve and eventually arrive at positive values of
x?

5. Uniqueness. Do any solutions intersect?

Based on the graphs in Figure 1.2, the answers to these questions seem to
be:

1. Monotonicity. Decreasing for x < 0 and increasing for x > 0.

2. Concavity. Concave down for x 6= 0.

8Odd functions have the property that f(�x) = �f(x) for all values of x in the domain
of f .

9A function is monotonic on an interval if it is either increasing on the entire interval or
decreasing on the entire interval.
10A function f(x) is singular at x = a if limx!a f(x) does not exist.
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3. Symmetry. Yes | across the y-axis. However, no particular solution
has this symmetry. It is the family of solutions that has this
symmetry.

4. Singularities. Not for any particular solution if the y-axis is a vertical
asymptote, as it appears to be.

5. Uniqueness. On this graph, the answer appears to be yes | near the
y-axis.

Now imagine that we are unable to integrate (1.16) explicitly, and so we
are unable to draw the particular solutions in Figure 1.2. How much of this
information (monotonicity, concavity, symmetry, singularities, and unique-
ness) can we obtain directly from the di¯ erential equation (1.16) using our
knowledge of calculus?

From calculus we know that y0 > 0 on an interval requires that y be
increasing on that interval, and y0 < 0 means that y is decreasing. We also
know that y00 > 0 on an interval requires the function to be concave up on
that interval, whereas y00 < 0 means the function is concave down. In Figure
1.4 we show the general shapes of solution curves for the four cases: y0 < 0,
y00 > 0; y0 > 0, y00 > 0; y0 > 0, y00 < 0; and y0 < 0, y00 < 0.

empty

Possible shapes of solution curves determined by the ° rst and second deriva-
tives

Figure 1.4

With this information, let's return to our original questions and try to
justify these answers.

1. Monotonicity. From (1.16) we see that the derivative of y(x) is positive
for x > 0, and so y increases there. Similar reasoning shows that y
decreases when x < 0.

2. Concavity. If we di¯ erentiate (1.16) with respect to x, we have

y00 =
d2y

dx2
= ² 1

x2
;
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which is negative for x 6= 0. Thus, the solutions must be concave down
for all x 6= 0.

3. Symmetry. To be symmetric across the y-axis means that we have no
change in the family of solutions if x is replaced by ² x on both sides of
(1.16). If in (1.16) we replace x by ² x we have

dy

² dx
=

1

² x
;

or y0 = 1=x, which is exactly (1.16). Thus, the family of solutions that
satis° es (1.16) is unchanged by the interchange of x by ² x, and so must
be symmetric across the y-axis.

4. Singularities. Because (1.16) is unde° ned at x = 0, we anticipate prob-
lems at x = 0.

5. Uniqueness. The statement that two solutions intersect means that
there is a common point (x0; y0) through which two distinct particular
solutions of (1.16), say y1(x) and y2(x), pass. Because both y1 and
y2 are solutions of (1.16), we must have y0

1 = 1=x and y0
2 = 1=x, so

that y0
1 = y0

2, or (y1 ² y2)
0 = 0: From this we have y1(x) ² y2(x) = C:

The fact that y0 = y1(x0) and y0 = y2(x0) requires that C = 0, so
that y1(x) = y2(x). In other words, the two curves y1(x) and y2(x) are
one and the same. This means that only one solution of (1.16) can pass
through any point (x0; y0). Another way of saying this is that a solution
of the di¯ erential equation (1.16) that passes through any given point is
unique. Consequently, contrary to our conjecture based on Figure 1.2,
solutions do not intersect. In fact, this argument can be used on any
di¯ erential equation of the form y0 = g(x) to show that their solutions
cannot intersect (see Exercise 7 on page 13). 2

Exercise care when drawing conclusions from graphical analysisCaution!
about whether curves intersect.

From the preceding analysis we see that just by using calculus we can ob-
tain much qualitative information about solution curves without knowing the
explicit solution. Let's see how we can use this to sketch the Error Function,
erf (x), by going through the checklist we have developed.

Example 7 : The Error Function Using the techniques of calculus, sketch
the family of solutions of the di¯ erential equation

y0 =
2p
�

e� x2

: (1.17)

1. Monotonicity. The derivative of y is always positive, so all solutions are
increasing.

2. Concavity. If we di¯ erentiate (1.17) with respect to x; we ° nd y00 =

² 4p
�
xe� x2

: From this we see that y00 > 0 when x < 0, and y00 < 0 when

x > 0. Thus, all solutions are concave up when x < 0 and concave down
when x > 0.
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3. Symmetry. If we replace x with ² x on both sides of (1.17), the right-
hand side is unchanged but the left-hand side changes sign. So the
family of solutions is not symmetric across the y-axis. However, if we
simultaneously replace x with ² x and replace y with ² y, then we obtain
(1.17) back again. So the family of solutions of (1.17) is unchanged under
simultaneous interchange of x with ² x and y with ² y. This means that
the family of solutions is symmetric about the origin.11

4. Singularities. There are no obvious points where the derivative fails to
exist.

5. Uniqueness. From arguments similar to those at the end of Example 6
on page 9, we see that solutions cannot intersect.

Based on this qualitative information, we can sketch by hand the family
of solutions of (1.17), which is shown in Figure 1.5.12 This family of solutions
contains the particular solution curve that passes through the point P with
coordinates (0; 0) | namely, erf (x). 2

empty

Some hand-drawn solution curves of y0 = 2e� x2

=� 1=2

Figure 1.5

Exercises

1. Use monotonicity, concavity, symmetry, singularities, and uniqueness
to sketch various solution curves for each of the following ° rst order
di¯ erential equations. Then draw the particular solution curve that
passes through the point P . When you have ° nished, compare your

11Recall that a graph is symmetric about the origin if it is unchanged when rotated 180o

about the origin.
12Throughout the text we make reference to hand-drawn solutions. Of course, they were

drawn by machine.
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answers with those you found for Exercise 1, Section 1.1.

(a) y0 = x3 P = (1; 1) (g) y0 = 1=x P = (² 1; 1)
(b) y0 = x4 P = (1; 1) (h) y0 = 1=(1 + x2) P = (1; � =4)
(c) y0 = cosx P = (0; 0) (i) y0 = 1=[x(1 ² x)] P = (2; 1)
(d) y0 = sinx P = (� ; 2) (j) y0 = lnx P = (1; 1)
(e) y0 = e� x P = (0; 1) (k) y0 = x2e� x P = (0; 1)
(f) y0 = 1=x2 P = (1; 1) (l) y0 = e� x sinx P = (0; 1)

2. Intuition suggests that if g(x) ! 0 as x ! 1 then the solutions of the
di¯ erential equation y0 = g(x) will have horizontal asymptotes. Explain
why this suggestion might be plausible. Explain why this suggestion is
wrong.

3. For the di¯ erential equation

y0 =
4

x (x ² 4)
;

° nd the explicit solution satisfying the initial condition (a) y(² 1) = 0,
(b) y(1) = 0, (c) y(5) = 0.

4. For what values of a and x0 is the solution of the initial value problem

y0 =
1

x (x ² a)
; y(x0) = 0;

valid for all x > 0?

5. The Fresnel Sine Integral. Use monotonicity, concavity, symmetry,
singularities, and uniqueness to sketch various solution curves for the

di¯ erential equation y0 =
q

2
� sinx2: Then draw the graph of the par-

ticular solution that satis° es y(0) = 0: What do you think happens to
y(x) as x ! 1? Compare your answers with the one you found for
Exercise 3, Section 1.1.

6. The Sine Integral. Use monotonicity, concavity, symmetry, singulari-
ties, and uniqueness to sketch various solution curves for the di¯ erential
equation y0 = g(x); where

g(x) =

¡
sinx=x if x 6= 0
1 if x = 0

:

Then draw the graph of the particular solution that satis° es y(0) = 0:
What do you think happens to y(x) as x ! 1? Compare your answers
with the one you found for Exercise 4, Section 1.1.

7. The Uniqueness Theorem. Show that if y1(x) and y2(x) are solu-
tions of the initial value problem y0 = g(x), y(x0) = y0, where g(x) is
continuous, then y1(x) = y2(x). How does this guarantee that di¯ erent
solutions of the di¯ erential equation y0 = g(x) cannot intersect?

8. Show that the family of antiderivatives of an even function is symmetric
about the origin.13 Under what conditions will an antiderivative of an
even function be an odd function? Give some examples.

13Even functions have the property that f(�x) = f(x) for all values of x in the domain
of f .
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1.3 Slope Fields and Isoclines

In the previous section we saw that using the techniques of calculus, we can
determine much qualitative information about solutions of y0 = g(x) from
the signs of the ° rst and second derivatives. However, there is still more
information contained in the di¯ erential equation, because, in addition to the
signs, it also gives us the magnitude of the slope at each point on a solution
curve. In this section we exploit this information.

What Are Slope Fields?=)

Example 8 : Lines

We start with a very simple di¯ erential equation that describes the function
whose rate of change is always 1, namely,

y0 = 1: (1.18)

Let's use our knowledge of calculus to sketch some solution curves of (1.18).
Because the right-hand side of (1.18) is positive (namely, 1), we know that
the solutions of (1.18) are increasing everywhere. From (1.18) we also know
that for all values of x and y, the solution of this di¯ erential equation has a
tangent line whose slope is 1. To transfer this information to a graph we can
select various coordinates (x; y) and draw short line segments with slope 1,
as shown in Figure 1.6.

From calculus we know that a di¯ erentiable function may be approximated
near a point on the curve by its tangent line at that point. Another way of
stating this is that each tangent segment gives the slope of the solution of a
di¯ erential equation at that point. Such a collection of short line segments
is known as a slope field of the di¯ erential equation, as it gives a shortSlope � eld
segment of the tangent line to the solution curve at each selected point.14

We now construct a solution curve such that the tangent lines to this curve
are consistent with the slope ° eld. If we try to draw a curve whose tangent
line has the slope 1 everywhere, we will end up drawing a straight line with
slope 1. In fact the solution curves of (1.18) are the family of straight lines
y = x + C. 2

How to Sketch the Slope Field for y0 = g(x; y)
Purpose: To sketch the slope ° eld for y0 = g(x; y):

Process

1. Select a rectangular window in the xy-plane in which to view the slope
° eld.

2. Subdivide this rectangular region into a grid of equally spaced points
(x; y). The number of points in the x and y directions may be di¯ erent.

14Slope ®elds are sometimes called direction ®elds.
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empty

Slope ° eld for y0 = 1

Figure 1.6

3. At each of these points (x; y), ° nd the numerical value of g(x; y) and
draw a short line segment at (x; y) with slope g(x; y).

Comments about Slope Fields

§All the slope ° elds in this book were computer generated.

§From now on we assume you either have access to a com-
puter/calculator program that displays slope ® elds or are will-
ing to construct slope ® elds by hand.

Example 9 : Parabolas

Now consider the di¯ erential equation that models the situation where the
rate of change of the unknown function is equal to the value of the independent
variable,

y0 = x: (1.19)

This is the ° rst example we considered in Section 1.1.
Again using our knowledge of calculus, we see that (1.19) tells us thatMonotonicity,

concavity, sym-
metry

solutions y = y(x) increase if x > 0 and decrease if x < 0. Moreover, because
y00 = 1, the second derivative of y is always positive, so y is concave up
everywhere. Finally, if we replace x by ² x in (1.19), the di¯ erential equation
remains unchanged, so the family of solutions is symmetric across the y-axis.

Because the right-hand side of (1.19) is de° ned for all values of x; there areSingularities
and uniqueness no singularities. As shown in Exercise 7 on page 13, all solutions of di¯ erential

equations of the form y0 = g(x), y(x0) = y0 are unique if g(x) is continuous,
so distinct solutions of (1.19) do not intersect.

If we construct the slope ° eld as shown in Figure 1.7, we can obtain moreSlope � eld
information: we have a zero slope when x = 0, and the slopes of the short
line segments of the slope ° eld increase as x increases. Notice that the slope
° eld appears to be symmetric across the y-axis.

Because the slope ° eld for a di¯ erential equation gives the inclination of
the tangent line to solutions at many points, the graph of any particular
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solution of this di¯ erential equation must be consistent with these tangent
lines. Notice that the solution curves of (1.19) have horizontal tangents for
x = 0, positive slopes for x > 0, and negative slopes for x < 0. Also note that
these slopes become larger as x increases.

empty

Slope ° eld for y0 = x

Figure 1.7

To manually draw a solution curve on the graph of the slope ° eld, we startDrawing
solution curves at some point; for instance, where we have already drawn a short tangent

line. Because the solution will be a di¯ erentiable function, its graph is well
approximated by its tangent line near every point. Thus, we may proceed in
the direction given by this tangent line for a short distance to the right and
then see what the slope ° eld looks like there. We then adjust the direction of
our curve so it changes in a manner consistent with this slope ° eld.

To show this for a speci° c case in Figure 1.7, consider the solution curve
that passes through the point (0; 1). As we move to the right from this point,
the curve changes from being horizontal in such a manner that the slope is
continually increasing. This gives the curve labeled A shown in Figure 1.8.
(Note that this results in a curve that is concave up.) Figure 1.8 also shows
some other hand-drawn solution curves (all of which are parabolas), each
having a di¯ erent y-intercept. 2

How to Manually Sketch Solution Curves from the Slope Field
for y0 = g(x; y)

Purpose: To sketch, by hand, solution curves from the slope ° eld for

y0 = g(x; y): (1.20)

Process

1. Sketch the slope ° eld for (1.20).

2. Start at some initial point and put a dot there. If this dot lies on a short
line segment, you have the slope of your solution curve at that point. If
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empty

Hand-drawn family of solution curves for y0 = x

Figure 1.8

not, estimate the value of the slope of the tangent line at that point by
looking at nearby slopes. This gives the direction of the slope ° eld at
that point.

3. Proceed in this direction for a short distance to the right. Place a dot
at the point where you ° nish.

4. Adjust your direction so it is consistent with the direction of the slope
° eld in the vicinity of the point where you ° nished.

5. Repeat steps 3 and 4, as often as needed, joining the dots with a curve.

6. Start with a new initial point, and return to step 2.

Example 10 : The Natural Logarithm Function

Once more we return to the di¯ erential equation

y0 =
1

x
: (1.21)

Based on our previous analysis we know we have a concave down, decreasing
shape for x < 0, and a concave down, increasing shape for x > 0. We also
know the family of solutions will be symmetric across the y-axis.

We now draw the slope ° eld for (1.21) (see Figure 1.9) and from it con° rmSlope � eld
the major properties of its solution. We see from Figure 1.9 that the solution
curves consistent with this slope ° eld are increasing for x > 0 and decreasing
for x < 0 and that all the slopes above a speci° c x location are equal. Figure
1.10 shows a few solution curves drawn on this slope ° eld. Note that the
solution curves are concave down everywhere, and that the slope ° eld appears
to be symmetric across the y-axis. Also note that the solution curves appear
to be vertical translations of each other. You should measure the verticalVertical trans-

lation distances between the curves to verify this conjecture. 2
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empty

Slope ° eld for y0 = 1=x

Figure 1.9

empty

Hand-drawn solution curves and slope ° eld for y0 = 1=x

Figure 1.10
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Now that we have some solution curves on the slope ° eld in Figure 1.10,
it is apparent that we can think of a slope ® eld as what remains after
plotting many solution curves and then erasing parts of them, leav-
ing only some short segments here and there that look like straight
lines. In this sense, the challenge in ° nding solution curves from a slope ° eld
is to ° ll in the gaps between the short line segments of the slope ° eld. This is
a major use of slope ° elds | namely, to determine the graph of a solution of a
di¯ erential equation whether or not an explicit solution is readily obtainable
in terms of familiar functions. Slope ° elds are also used to check consistency
with your ° ndings concerning monotonicity and concavity.

Example 11 : The Error Function

We already have an example where we needed to draw a solution curve of an
initial value problem without having an explicit solution in terms of famil-
iar functions | namely, the initial value problem that generates the Error
Function,

y0 =
2p
�

e� x2

; y(0) = 0: (1.22)

Because we want the solution of this equation that starts at the point
(0; 0), we construct the slope ° eld that includes this point, as shown in FigureSlope � eld
1.11.

empty

Slope ° eld for y0 = 2e� x2

=� 1=2

Figure 1.11

As expected, the slope ° eld indicates that the solution curve that passes
through (0; 0) is increasing everywhere, concave up when x < 0 and concaveMonotonicity,

concavity, sym-
metry

down when x > 0. Also notice that the slope ° eld appears to be symmetric
about the origin. Figure 1.12 shows a hand-drawn solution curve for (1.22)
that passes through the origin, the graph of y = erf (x).

We could also use a numerical integration technique to obtain values for
erf (x) at di¯ erent values of x from its de° nition, namely,

erf (x) =
2p
�

Z x

0

e� t2 dt:
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empty

Hand-drawn graph of y = erf (x)

Figure 1.12

For example, we used Simpson's rule on this integral to create Table 1.1.15

(Here we set the number of subintervals to 16 and rounded the answers to
three decimal places.) Figure 1.13 shows the slope ° eld, these numerical
values, and a hand-drawn solution curve. Notice the agreement between this
solution curve and a plot of these numerical values. 2

Table 1.1 Simpson's rule for erf (x)
x y(x)

0.0 0.000
0.5 0.520
1.0 0.843
1.5 0.966
2.0 0.995

Slope ® elds can sometimes be misleading | see Exercise 8 on page
27. We must make sure that any conclusions drawn from slopeCaution!
® elds are con® rmed by other means. One way is to make use of the
analytical and graphical techniques learned from the previous two sections,
where the ° rst and second derivatives of a function give us information about
the function itself.

What Are Isoclines?=)

We now exploit the slope ° eld concept in a di¯ erent way, to obtain addi-
tional properties of solution curves directly from the di¯ erential equation.

Example 12 : The Natural Logarithm Function

We start by reconsidering the di¯ erential equation

y0 =
1

x
; (1.23)

15See a calculus text to remind yourself of Simpson's rule.
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empty

Numerical values and hand-drawn graph of y = erf (x)

Figure 1.13

which has the slope ° eld shown in Figure 1.9. Our objective is to show thatSlope � eld
this slope ° eld is reasonable.

In calculus, a ° rst step in plotting the graph of a function was to compute
its derivative, but (1.23) supplies the derivative of all the solution curves
without any further work. In calculus we then set the derivative equal to 0
to ° nd horizontal tangents. Because the derivative in this case, 1=x; is never
equal to 0, no solution curve has a horizontal tangent.

Even though there are no points on any of our solution curves that have a
horizontal tangent, we can set the derivative equal to another constant and see
for what value (or values) of x the solution curves would have that constant
slope. For example, because 1=x = 1 for x = 1, the short line segments will
have a slope of 1 at all points on the slope ° eld where x equals 1. In general
we can say that solution curves will have a slope equal to m whenever

1

x
= m;

that is,

x =
1

m
;

which is a vertical line through the point (1=m; 0).
This vertical line is called an isocline (equal inclination) of the di¯ erentialIsoclines

equation (1.23). All solution curves of (1.23) will have the same slope, m, as
they cross the isocline at this value of x. For example, the solution curves of
(1.23) will have a slope of 1 when x = 1, a slope of 1=2 when x = 2, a slope of
2 when x = 1=2; a slope of ² 1 when x = ² 1, a slope of ² 1=2 when x = ² 2,
and a slope of ² 2 when x = ² 1=2. We can see that Figure 1.14 is consistent
with this information, which shows isoclines for m = · 1=2 and m = · 1. To
make sure you understand isoclines, add the isoclines for m = 2 and m = ² 2
to this ° gure. Is there an isocline for m = 0?

We hope that with this additional information you feel very con° dent in
drawing solution curves consistent with the slopes, the isoclines, the mono-
tonicity, and the concavity we have determined (Figure 1.15). 2
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empty

Isoclines (m = · 1=2, · 1) and slope ° eld for y0 = 1=x

Figure 1.14

empty

Hand-drawn solution curves and slope ° eld for y0 = 1=x

Figure 1.15
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De® nition 13 : An isocline corresponding to slope m of the di� er-
ential equation y0 = g(x; y) is the curve characterized by the equation
g(x; y) = m.

Comments about Isoclines

§For any particular m, the isocline corresponding to slope m may consist
of more than one curve.

§An isocline corresponding to slope m is also called an isocline for slope
m.

§If g(x; y) does not include y, isoclines are vertical lines.

§In the general case where g(x; y) depends on both x and y, isoclines
may not be lines. For example, if g(x; y) = x2 + y2 then the isoclines
x2 + y2 = m are circles centered at the origin with radius

p
m.

How to Sketch Isoclines for y0 = g(x; y)
Purpose: To sketch isoclines for y0 = g(x; y):

Process

1. Set
g(x; y) = m; (1.24)

where m is constant.

2. Pick several di¯ erent values for m. For each m try to solve (1.24) for
y in terms of x and m, or for x in terms of y and m. If this cannot be
done, try to identify the curves de° ned implicitly by (1.24). This gives
the isocline corresponding to slope m.

3. For each value of m, plot the isocline corresponding to slope m.

4. If you are constructing slope ° elds by hand, draw short line segments
with slope m crossing the appropriate isocline.

Example 14 : The Error Function

Now we return to the di¯ erential equation giving rise to the Error Function,

y0 =
2p
�

e� x2

:

The isocline corresponding to slope m is given byIsocline

2p
�

e� x2

= m: (1.25)

Notice that this guarantees that there are no isoclines for slope m ¼ 0 or
for slope m > 2=

p
� � 1:128. (Why?) If we solve (1.25) for x we obtain

x = · fln [2= (m
p
� )]g1=2

as the equation of the isocline corresponding to
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empty

Isoclines (m = 0:1, 0:3, 0:7) and slope ° eld for y0 = 2e� x2

=� 1=2

Figure 1.16

slope m. The isoclines for slope 0:1, 0:3, and 0:7 are shown in Figure 1.16.
Notice that in this case each isocline consists of two vertical lines. 2

To summarize results found to this point, we gather together some general
observations about di� erential equations of the special form y0 =
g(x):

§All solutions are explicit.Summary

§Once we have found one member of the family of solutions, other mem-
bers of the family can be generated from this member by vertical trans-
lations.

§If y0 = g(x) remains unchanged after the interchange of x by ² x, then
the family of solutions is symmetric across the y-axis.

§If y0 = g(x) remains unchanged after the simultaneous interchange of
y by ² y and x by ² x, then the family of solutions is symmetric about
the origin.

§For the case y0 = g(x); all isoclines are vertical lines; that is, parallel
to the y-axis.

Exercises

1. Sketch the slope ° eld for each of the following ° rst order di¯ erential
equations. In each case draw some isoclines to con° rm your sketch. Use
your sketch to draw various solution curves. Then draw the solution
curve that passes through the point P . When you have ° nished, com-
pare your answers with those you found for Exercise 1, Section 1.1, and
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Exercise 1, Section 1.2.

(a) y0 = x3 P = (1; 1) (g) y0 = 1=x P = (² 1; 1)
(b) y0 = x4 P = (1; 1) (h) y0 = 1=(1 + x2) P = (1; � =4)
(c) y0 = cosx P = (0; 0) (i) y0 = 1=[x(1 ² x)] P = (2; 1)
(d) y0 = sinx P = (� ; 2) (j) y0 = lnx P = (1; 1)
(e) y0 = e� x P = (0; 1) (k) y0 = x2e� x P = (0; 1)
(f) y0 = 1=x2 P = (1; 1) (l) y0 = e� x sinx P = (0; 1)

2. Explain why it is useful to plot isoclines corresponding to an in° nite
slope, even though no point on a solution curve can have a vertical
tangent.

3. The Fresnel Sine Integral. Use slope ° elds and isoclines for the

di¯ erential equation y0 =
q

2
� sinx2 to draw various solution curves.

Then draw the solution curve that satis° es y(0) = 0: What do you
think happens to y(x) as x ! 1? Compare your answers with those
you found for Exercise 3, Section 1.1, and Exercise 5, Section 1.2.

4. The Sine Integral. Consider the di¯ erential equation y0 = g(x); where

g(x) =

¡
sinx=x if x 6= 0
1 if x = 0

:

Use slope ° elds and isoclines to draw various solution curves. Then draw
the solution curve that satis° es y(0) = 0: What do you think happens
to y(x) as x ! 1? Compare your answers with those you found for
Exercise 4, Section 1.1, and Exercise 6, Section 1.2.

5. Figure 1.17 shows one member of a family of solutions of the di¯ erential
equation y0 = g(x); where g(x) is a given function.

(a) Use this information to plot other members of the family of solu-
tions. Do not attempt to ° nd y(x) or g(x).

(b) Can every solution of the di¯ erential equation be obtained by the
technique used in part (a)?

6. Figures 1.18 and 1.19 are mystery slope ° elds, believed to be the slope
° elds for two of the following di¯ erential equations:

y0 =
x2 + 1

x2 ² 1
; y0 =

x2 ² 1

x2 + 1
; y0 = ² x2 + 1

x2 ² 1
; y0 = ² x2 ² 1

x2 + 1
:

(a) Identify to which di¯ erential equation each of the mystery slope
° elds belongs. Con° rm all the information using calculus and iso-
clines. Do not plot any slope ° elds to answer this question.

(b) Now superimpose the two mystery slope ° elds, perhaps by placing
one on top of the other and holding both up to the light. [Another
way to do this is to plot the slope ° elds for

y0 = a
x2 + 1

x2 ² 1
+ b

x2 ² 1

x2 + 1
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empty

Figure 1.17 Graph of y(x)

empty

Figure 1.18 Mystery slope � eld 1

empty

Figure 1.19 Mystery slope � eld 2
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with a = · 1 and b = 0, and then with a = 0 and b = · 1.] What
do you notice? Would this have made your previous analysis in
part (a) easier?

7. Consider the following four di¯ erential equations:

y0 = x + 1; y0 = x ² 1; y0 = ln jxj; y0 = x2 ² 1:

(a) The slope ° eld of one of the preceding equations is given in Figure
1.20. Match the correct equation with the ° gure, carefully stating
your reasons. Do not plot any slope ° elds to answer this question.

(b) Briey outline a general strategy for this matching process.

empty

Figure 1.20 Identify the slope � eld

8. Use a computer/calculator program to sketch the slope ° eld for y0 =
1 + cos (1000x) in the window ² 10 < x < 10, ² 10 < y < 10. Use
your sketch to draw the solution curve that passes through the point
(0; 0). Now solve the di¯ erential equation and ° nd the formula for the
particular explicit solution that passes through the point (0; 0). Plot
this solution on top of your previous sketches, and comment on what
you see. What lesson can be learned from this exercise?

9. If an object falls out of an airplane, its downward velocity after x seconds
is often crudely approximated by

y0 =
g

k

¢
1 ² e� kx

�
;

where g = 9:8 m/sec2 and k = 0:2 sec� 1. Here y(x) is the distance fallen
at time x so y(0) = 0. If this object falls from 5000 meters above the
ground, estimate how many seconds it falls before it hits the ground, by

(a) using slope ° elds, monotonicity, isoclines, and concavity, and

(b) ° nding the explicit solution.

What Have We Learned?
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Main Ideas

§A first order ordinary differential equation is an equation
that involves at most the ° rst derivative of an unknown function. If y,
the unknown function, is a function of x, then we write the ° rst order
equation as

dy

dx
= g(x; y)

where g(x; y) is a given function of x and y.

§An explicit solution of

dy

dx
= g(x; y) (1.26)

is any function y = y(x) (di¯ erentiable in some interval a < x < b) that
identically satis° es the di¯ erential equation (1.26).

§If an explicit solution contains an arbitrary constant, the in° nite num-
ber of solutions it generates is called a family of explicit solutions.
If an explicit solution contains no arbitrary constant, it is called a par-
ticular explicit solution.

§The graph of a particular solution is called a solution curve of the
di¯ erential equation.

§Looking for a solution of a di¯ erential equation that must pass through
a given point is called an initial value problem, and the point is
called an initial value, initial condition, or initial point.

§There is one and only one solution of any di¯ erential equation of the
form y0 = g(x) that passes through a given point (x0; y0) if g(x) is
continuous. See the Uniqueness Theorem on page 13.

§To sketch slope ° elds, see How to Sketch the Slope Field for y0 = g(x; y)
on page 14.

§To hand-draw solution curves from slope ° elds, see How to Manually
Sketch Solution Curves from the Slope Field for y0 = g(x; y) on page 16.

§An isocline corresponding to slope m of the di¯ erential equation
y0 = g(x; y) is the curve characterized by the equation g(x; y) = m.

§To sketch isoclines, see How to Sketch Isoclines for y0 = g(x; y) on page
23.

§When the explicit solution is left in the form of a de° nite integral, it
is frequently possible to put it in an alternative form. This is done by
expanding the integrand using Taylor series, and then integrating the
result term by term. See page ??.

Words of Caution

§Exercise care when drawing conclusions from graphical analysis about
whether curves intersect.

§Make sure that any conclusions drawn from one technique are con° rmed
by other techniques.
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