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Abstract: The effect of financial factors on real business cycle is rising to one of the most popular
discussions in the field of macro business cycle theory. The objective of this paper is to discuss
the features of business cycle under financial shocks by quantitative technology. More precisely, we
introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics
of the model. The shocks include external shock and internal shock, both of which are expressed as
noises. The dynamics of the model can help us understand the effects of financial shocks on business
cycle and improve our knowledge about financial business cycle. In the case of external shock, if
the intensity of shock is less than some threshold value, the economic system behaves randomly
periodically. If the intensity of shock is beyond the threshold value, the economic system will converge
to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value,
the economic system behaves periodically as the case without shock. If the intensity of shock exceeds
the threshold value, the economic system either behaves periodically or converges to a normalcy. It
is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the
intensities of shocks under which the economic system behaves randomly periodically or disorderly,
or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are
presented.
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1. Introduction

The theory of real business cycle and Keyneianism IS-LM model (Kynes, 1936) are two
frameworks in macroeconomics which are both widely approved. Although the two theories are very
different, they both follow Modigliani-Miller theorem, which says that financial factors make no
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difference to real economic variables. However, after American subprime mortgage crisis, the effects
of financial factors on business cycle are becoming more remarkable (Alpanda et al., 2014; Christiano
et al., 2007; Jerman et al., 2012), which form the features of financial business cycle (Iacoviello,
2015; Mimir, 2016). Firstly, the economy and financial factors have intimate connections (Claessens
et al., 2012). Secondly, the economy fluctuates continuously by shocks which are transmitted by
monetary sector (Kamber et al., 2013; Kollmann, 2013). Thirdly, tiny change may be magnified by
financial market such that it could lead to a big shock hitting on global economy (Luca et al., 2009).
These features have exceeded the research scope of classical theories of business cycle. It raises the
need of a framework for analysis. Many economists and mathematical finance scholars have
attempted to introduce financial factors into the frameworks of business cycle.

Under the framework of Keyneianism, both the well known Kaldor and Kalecki business cycle
models use an investment function which is based on the profit principle rather than the acceleration
principle. In the Kaldor (1940) model, the gross investment depends on the level of output and capital
stock. For a given quantity of real capital, investment depends on the level of profit, which in turns
depends on the level of activity. Kaldor presented the assumptions on nonlinear investment and
savings function and their shift over time which give rise to a cycle. Thereafter, the model has been
paid much attentions. Varian (1979) explored the possibility that the economic system possesses a
unique limit cycle. The most important result was the paper (Chang et al., 1971), where the model
was reexamined and the necessary and sufficient conditions of the existence of a limit cycle were
stated. The coexistence of a limit cycle and an equilibrium was considered by Grasman and Wentzel
(1994). The Kalecki (1935, 1937) business cycle model was a few years earlier than the Kaldor one.
Kalecki assumed that the saved part of profit is invested and the capital growth is due to past
investment decisions. There is a gestation period or a time lag, after which capital equipment is
available for production. Krawiec and Szydłwsk (1999, 2001) formulated the Kaldor-Kalecki
business cycle model based on the multiplier dynamics which is the core of both the Kaldor and
Kaleckis approach but followed Kaleckis idea to investment and of a time lag between investment
decisions and implementation. They obtained a delay differential equation system and applied the
Hopf bifurcation mechanism to create the limit cycle. They showed that the dynamics of the system
depended crucially on the time delay parameter. Then they investigated the stability of the limit cycle
(Szydłwsk et al., 2005). Following the works of Krawiec and Szydłwsk, Kaddar and Alaoui (2008,
2009) proposed another delay Kaldor-Kalecki model of business cycle. They derived the similar
results to those of Krawiec and Szydłwsk (1999, 2001). More other results about the Kaldor-Kalecki
model can be referred to Bashkirtseva et al. (2016), De Cesare et al. (2012), Liao et al. (2005),
Mircea et al. (2011), Wang et al. (2009), Wu (2012), Zhang et al. (2004). For example, Liao et al.
(2005) studied chaos in the model. Wu (2012) carried out the zero-Hopf bifurcation of the model.
Bashkirtseva et al. (2016) analyzed the stochastic effects in the discrete Kaldor-Kalecki model.
Mircea et al. (2011) studied the Hopf bifurcation of the mean and variance of a stochastic
Kaldor-Kalecki model.

The aim of this paper is to model business cycle under shocks and see the effects of shocks on
the economic system. We introduce the financial shocks into the Kaldor-Kalecki model. The financial
shocks are regarded as random noises perturbing the model and thus the model shows volatility and
risky. Then we study the dynamics of the model in the framework of stochastic differential equations
(Øksendal et al., 2000) and random dynamical systems (Arnold, 1988; Crauel et al., 1999), which can
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help us understand the effects of financial shocks on business cycle and improve our knowledge of the
law of financial business cycle. As we focus on the effects of financial shocks on the model, we omit
the time-delay effect in the Kaldor-Kalecki model.

The paper is organized as follows. In Section 2, we simplify the Kaldor-Kalecki model into a
normal form in the framework of ordinary differential equations. The normal form of the
Kaldor-Kalecki model admits the same essence as the original Kaldor-Kalecki model, but just is more
convenient to consider. Then by applying the polar transformation, the model is transferred into a
more intuitionistic form and the existence of limit cycle, which implies the business cycle, is proved.
In Section 3, we introduce shocks, which are regarded as noises, into the normalized Kaldor-Kalecki
model and make it stochastic. The shocks include external shock and internal shock. Then the
dynamics of the stochastic models with external shock, internal shock, both external shock and
internal shock are investigated respectively in the framework of stochastic differential equations and
random dynamical systems. We present conditions of intensities of shocks under which the system
shows different kinds of dynamics, such as behaving randomly periodically, converging to normalcy,
behaving uncertainly and disorderly. Especially, production of stable invariant measure of the random
dynamical system associating with the stochastic model means that the system behaves randomly
periodically, namely that the amplitude and velocity of period are random but stationary, whose laws
are invariant with respect to time. In Section 4, we give some discussions about the effects of financial
shocks on the economic system.

2. Kaldor-Kalecki Model

In this section, we simplify the Kaldor-Kalecki model to a normal form and prove the existence
of limit cycle. The Kaldor macro business cycle model (Kaddar et al., 2008) is a two-dimensional
autonomous dynamical system in the form Y ′ = α(I(Y,K) − S (Y,K)),

K′ = I(Y,K) − qK,
(1)

where I is the nonlinear investment and S is the savings function, Y is gross product, K is capital stock,
α is the adjustment coefficient in the goods market, and q is the depreciation rate of the capital stock.
Similar to Kaddars assumption (2008), we assume that the savings function S depends only on Y and is
linear such that S (Y) = γY , γ > 0. The investment function separates with respect to its two arguments
and is linear with respect to K, that is I(Y,K) = I(Y) − βK, β > 0. Then system (1) translates to the
following differential equations  Y ′ = αI(Y) − αβK − αγY,

K′ = I(Y) − (β + q)K.
(2)

It is easy to see that there is a non-trivial steady state (Y∗,K∗) such that I(Y∗) − βK∗ − γY∗ = 0,
I(Y∗) − (β + q)K∗ = 0.

(3)
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Making a transformation of coordinates y = Y − Y∗, k = K − K∗, the system is translated into y′ = α(i(y) − βk − γy),
k′ = i(y) − (β + q)k,

(4)

where i(y) = I(y+Y∗)−I(Y∗), which is similar to system (1) formally. Hence, without loss of generality,
it is reasonable and convenient to consider (0, 0) as the steady state which we will work on.

2.1. Normal Form of Kaldor-Kalecki Model

In this subsection, we carry out a normal form of the Kaldor-Kalecki model, which is a
simplification without loosing essential information of the system. Suppose that I is a sufficiently
smooth function. Expanding I at 0, system (2) is approximately translated into the following form:

Y ′ =(αI′(0) − αγ)Y − αβK +
α

2
I′′(0)Y2 +

α

6
I′′′(0)Y3 + O(Y4),

K′ =I′(0)Y − (β + q)K +
1
2

I′′(0)Y2 +
1
6

I′′′(0)Y3 + O(Y4).
(5)

The eigenpolynomial of the system is given by

λ2 + (αγ + β + q − αI′(0))λ + αβγ + αγq − αqI′(0) = 0. (6)

Supposing that λ = λr ± λci are foots of (6), then λr is solved by

λr =
1
2

(αI′(0) − αγ − β − q). (7)

Supposing that
(αγ + β + q − αI′(0))2 − 4αβγ − 4αγq + 4αqI′(0) < 0, (8)

then
λc =

1
2

√
4αβγ + 4αγq − 4αqI′(0) − (αγ + β + q − αI′(0))2. (9)

Making the transformation of coordinates φ = (−β − q − λr)Y + αβK,

ϕ = λcY,
(10)

then system (5) is translated into the following form:
ϕ′ =λrϕ − λcφ +

α

2λc
I′′(0)ϕ2 +

α

6λ2
c
I′′′(0)ϕ3,

φ′ =λrφ + λcϕ +
α(−q − λr)

2λ2
c

I′′(0)ϕ2 +
α(−q − λr)

6λ3
c

I′′′(0)ϕ3,
(11)

where we omit the high order terms. In the framework of normal form of ordinary differential
equations, the system can be simplified into the following form:ϕ′ = λrϕ − λcφ + (νϕ − κφ)(ϕ2 + φ2),

φ′ = λcϕ + λrφ + (κϕ + νφ)(ϕ2 + φ2),
(12)
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where

ν =
αI′′′(0)
16λ2

c
+
α2I′′2(0)
8|λ|2λ2

c

(
− 2q − λr −

(q + λr)2λr

λ2
c

)
(13)

and

κ = −
α(q + λr)I′′′(0)

16λ3
c

+
α2I′′2(0)
4|λ|2λc

(
−

(q + λr)λr

λ2
c

+
(q + λr)2

2λ2
c
−

1
2

)
. (14)

The detailed procedure of simplification can be found in Appendix A.

2.2. Existence of Limited Cycle

Making the transformation of polar coordinates ϕ = r cos Θ, φ = r sin Θ, then we have r′ = λrr + νr3,

Θ′ = λc + κr2.
(15)

If λr < 0, ν > 0 or λr > 0, ν < 0, letting λrr+νr3 = 0, one can get r = 0, r = ±

√
−
λr
ν

. Hence, r =

√
−
λr
ν

is a limited cycle.

Case I. λr > 0, ν < 0. As r <
√
−
λr
ν

, r′ > 0. As r >
√
−
λr
ν

, r′ < 0. Hence, r =

√
−
λr
ν

is a stable limited
cycle.

Case II. λr < 0, ν > 0. As r <
√
−
λr
ν

, r′ < 0. As r >
√
−
λr
ν

, r′ > 0. Hence, r =

√
−
λr
ν

is a unstable
limited cycle.
The period of the business cycle is given by

T =
2πν

νλc − κλr
. (16)

3. Stochastic Dynamics Driven by Financial Shocks

In Section 2, we have obtained a normal form (12) of the original system (5) and proved the
existence of business cycle as long as the parameters satisfy λr < 0, ν > 0 or λr > 0, ν < 0. In the first
case, the limited cycle is unstable. In the second case, the limited cycle is stable. Recalling that the
aim of this paper is investigating the effects of financial shocks making on the economic system, in this
section, we introduce the financial shocks into system (15), which is equivalent to system (12). The
financial shocks are expressed as noises. Through out of this section, we assume that λr > 0, ν < 0.

3.1. Stochastic Model with External Shock

In this subsection, we introduce the financial shock into system (15) and get the following
stochastic system  r′ = λrr + νr3 + εrξt,

Θ′ = λc + κr2,
(17)

where ξt is a white noise. Note that the original equivalent solution r =

√
−
λr
ν

was destroyed by the
noise. Hence, the noise can be interpreted as external shock (ksendal B et al, 2001). In the following
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argument, we study the dynamics of system (17) in the framework of stochastic differential equations
of Itô type and random dynamical system. We choose Itô interpretation and rewrite system (17) as dr = (λrr + νr3)dt + εrdB(t),

dΘ = (λc + κr2)dt,
(18)

where B(t) is a Brownian motion defined on a probability space (Ω,F , {Ft}t≥0,P). Denote {θt}t∈R the
classical Brownian shift on the probability space. According to the results given by Arnold (1998),
there exists a unique local random dynamical system Φ such that (Φ(t, ·)r0)t∈R is the unique maximal
strong solution of (18) with initial value r0 ≥ 0. It is represented by

Φ(t, ω)r0 = r0 +

∫ t

0
(λrΦ(s, ω)r0 + νΦ3(s, ω)r0)ds + ε

∫ t

0
Φ(s, ω)r0dB(s) (19)

for t ∈ (τ−(r0, ω), τ+(r0, ω)), where τ+ and τ− are the forward and backward explosion times of the orbit
Φ(·, ω)r0 starting at time t = 0 in position r0. In the framework of stochastic bifurcation of random
dynamical system, we have the following results:

Proposition 3.1. System (19) undergoes a stochastic pitchfork bifurcation at λr = ε2

2 , and undergoes a
P-bifurcation at λr = ε2. The generated non-trivial invariant measure supported on R+ is denoted by
δr+

, where

r+ =

(
− 2ν

∫ 0

−∞

exp(2λr s − ε2s + 2εB(s))ds
)− 1

2

, (20)

whose probability density function is given as

p+(r) = 2
(
−
ε2

ν

) 1
2−

λr
ε2

Γ−1
(
λr

ε2 −
1
2

)
r(2λr−2ε2)/ε2

e
ν

ε2
r2
. (21)

The proof of Proposition 3.1 can be found in Appendix B. Returning to system (18), we have
r+(θtω) = exp

(
λrt −

ε2

2
t + εB(t)

)
/
(
− 2ν

∫ t

−∞

exp(2λr s − ε2s + 2εB(s))ds
) 1

2

,

Θ(t) =Θ0 + λct + κ

∫ t

0
r2

+(θsω)ds.
(22)

As r+ is a ergodic and stationary process, it can be regarded as a stochastic limited cycle of system
(18), corresponding to the deterministic limited cycle of system (15). The mean of amplitude r+ can
be calculated as

E[r+] =

∫ ∞

0
rp+(r)dr =

√
−
ε2

ν
Γ

(
λr

ε2

)
Γ−1

(
λr

ε2 −
1
2

)
. (23)

The mean of r2
+ can be calculated as

E+[r2
+] =

∫ ∞

0
r2 p+(r)dr = −

ε2

ν
Γ

(
λr

ε2 +
1
2

)
Γ−1

(
λr

ε2 −
1
2

)
, (24)
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which implies the mean of the rate Θ′(t) can be given as

E[Θ′(t)] = λc + κE[r2
+] = λc −

κε2

ν
Γ

(
λr

ε2 +
1
2

)
Γ−1

(
λr

ε2 −
1
2

)
. (25)

In this way, the period of the limited cycle can be approximated by

T1 = 2πνΓ
(
λr

ε2 −
1
2

)
/
(
νλcΓ

(
λr

ε2 −
1
2

)
− κε2Γ(

λr

ε2 +
1
2

)
)
. (26)

If λr > ε
2, it is easy to check that the maximum of probability density function is located at

r∗ =

√
ε2 − λr

ν
, (27)

which means that r∗ is the mode of r+. In this way, the period of the limited cycle can be approximated
by

T2 =
2πν

λcν + κε2 − κλr
. (28)

3.2. Stochastic Model with Internal Shock

In the last subsection, we introduce the financial shock, which is considered as an external noise,
into system (15). In this subsection, we introduce another financial shock into system (15) and get the
following system  r′ = (1 + εξt)r(λr + νr2),

Θ′ = λc + κr2,
(29)

where ξt is a white noise. As the original equivalent solution r =

√
−
λr
ν

is still a solution of the
stochastic model (29), we interpret the noise as an internal shock. In the following argument, we
study the dynamics of system (29) in the framework of stochastic differential equations of Itô type and
random dynamical system as well. We choose Itô interpretation and rewrite system (29) as dr = r(λr + νr2)dt + εr(λr + νr2)dB(t),

dΘ = (λc + κr2)dt,
(30)

where B(t) is a Brownian motion. The random dynamical system Φ associating with (30) with initial
value r0 ≥ 0 can be represented by

Φ(t, ω)r0 = r0 +

∫ t

0
(λrΦ(s, ω)r0 + νΦ3(s, ω)r0)ds + ε

∫ t

0
(λrΦ(s, ω)r0 + νΦ3(s, ω)r0)dB(s). (31)

Denote r+ =

√
−
λr
ν

and r− = −

√
−
λr
ν

. It is easy to see that system (31) admits three trivial invariant
measures δ0, δr+ and δr− . We are just interested in the case of r ≥ 0. The following proposition tells the
dynamics of system (31).
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Proposition 3.2. Let Φ be the system in (31) with initial value r0 > 0. Then

Case I. If ε2λr < 2, then Φ(t)r0 →

√
−
λr
ν

almost surely as t → ∞, which implies that δr+ is a stable
Φ-invariant measure.
Case II. If ε2λr > 2 and r0 <

√
−
λr
ν

, then

P
(
Φ(t)r0 →

√
−
λr

ν
as t → ∞

)
= f (r2

0)/ f
(
−
λr

ν

)
(32)

and
P(Φ(t)r0 → 0 as t → ∞) = 1 − f (r2

0)/ f
(
−
λr

ν

)
, (33)

where

f (x) =

∫ x

0
y−

(
1

ε2λr
+ 1

2

)(
−
λr

ν
− y

) 1
ε2λr dy. (34)

The proof of Proposition 3.2 can be found in Appendix C. The results of Proposition 3.2 tells that if

the parameters of the system satisfy ε2λr < 2, the limited cycle r =

√
−
λr
ν

is stable. If ε2λr > 2, the
limited cycle is stable in some probability less than one. The period of the limited cycle is the same as
(16).

3.3. Stochastic Model with External and Internal Shocks

In the last two subsection, the dynamics of system (15) with external shock and internal shock are
investigated respectively. In this subsection, we consider the system with both two kinds of shocks,
namely that  r′ = (1 + ε2ξ2t)r(λr + νr2) + ε1rξ1t,

Θ′ = λc + κr2,
(35)

where ξ1t and ξ2t are white noises. Similarly, the stochastic differential equation of Itô type of (35) can
be rewritten as  dr = r(λr + νr2)dt + ε1rdB1(t) + ε2r(λr + νr2)dB2(t),

dΘ = (λc + κr2)dt,
(36)

where B1(t) and B2(t) are two Brownian motions satisfying 〈B1, B2〉t = ρt, −1 ≤ ρ ≤ 1. Dynamics of
stochastic system with double noises can be referred to Huang (2016). The random dynamical system
associating with (36) with initial value r0 > 0 can be represented by

Φ(t, ω)r0 =r0 +

∫ t

0
(λrΦ(s, ω)r0 + νΦ3(s, ω)r0)ds + ε1

∫ t

0
Φ(s, ω)r0dB1(s)

+ ε2

∫ t

0
(λrΦ(s, ω)r0 + νΦ3(s, ω)r0)dB2(s).

(37)

The following proposition shows the dynamics of system (37).

Proposition 3.3. If γ < 3
2 , system Φ in (37) undergoes a stochastic pitchfork bifurcation at λr = α

2
and undergoes a P-bifurcation at λr = α. The probability density function of the generated non-trivial
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invariant measure δr+
supporting on R+ is given as

p(r) =
2√

αr2 + βr4 + γr6
exp

( ∫ r

c

(2λr − α) + (2ν − 2β)x2 − 3γx4

αx + βx3 + γx5 dx
)

=Cr
4λr−3α

α (α + βr2 + γr4)−
α+λ
α −

1
2 exp

( 4αν − 2βλr

α
√

4αγ − β2
arctan

(
β + 2γx2√
4αγ − β2

))
,

(38)

where

α = ε2
1 + 2ε1ε2ρλr + ε2

2λ
2
r , β = 2ε1ε2ρν + 2ε2

2λrν, γ = ε2
2ν

2, (39)

C =

( ∫ ∞

0
r

4λr−3α
α (α + βr2 + γr4)−

α+λ
α −

1
2 exp

( 4αν − 2βλr

α
√

4αγ − β2
arctan

(
β + 2γx2√
4αγ − β2

))
dr

)−1

. (40)

If γ > 3
2 , δ0 is the unique invariant measure. If λr <

α
2 , then δ0 is stable. Otherwise, δ0 is unstable.

Detailed proof of Proposition 3.3 can be found in Appendix D. Returning to system (36), r+(θtω)
is an ergodic and stationary process, which can be regarded as a stochastic limited cycle of (36),
corresponding to the deterministic limited cycle. The mean of r+ is given as

E[r+] =

∫ ∞

0
Cr

4λr−2α
α (α + βr2 + γr4)−

α+λ
α −

1
2 exp

( 4αν − 2βλr

α
√

4αγ − β2
arctan

(
β + 2γx2√
4αγ − β2

))
dr. (41)

The mean of r2
+ is given as

E[r2
+] =

∫ ∞

0
Cr

4λr−α
α (α + βr2 + γr4)−

α+λ
α −

1
2 exp

( 4αν − 2βλr

α
√

4αγ − β2
arctan

(
β + 2γx2√
4αγ − β2

))
dr. (42)

and so as E[Θ′(t)] = λc + κE[r2
+]. The approximated period of limited cycle is given as

T1 =
2π

λc + κ
∫ ∞

0
Cr

4λr−α
α (α + βr2 + γr4)−

α+λ
α −

1
2 exp( 4αν−2βλr

α
√

4αγ−β2
arctan( β+2γx2

√
4αγ−β2

))dr
. (43)

If λr > α, the maximum of the probability density function is located at

r∗ =

√
(ν − 2β) +

√
(2β − ν)2 − 12γ(α − λr)

6γ
, (44)

which is the mode of r+. The corresponding approximated period of limited cycle is given as

T2 =
12πγ

6λcγ + κ(ν − 2β) + κ
√

(2β − ν)2 − 12γ(α − λr)
. (45)
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4. Discussions

In Section 3, we have studied the dynamics of the business cycle model with external shock,
internal shock, both external and internal shocks respectively in the framework of stochastic
differential equations and random dynamical systems. The dynamics of the model can acquaint us
with the effects of shocks on the business cycle. In the case of external shock, if the intensity of the
shock ε satisfies ε2 < 2λr, there exists an ergodic and stationary process r+(t) such that the original

amplitude r =

√
−
λr
ν

of the business cycle transfers to r+(t), which volatilities randomly. The original

velocity Θ′(t) = λcν−κλr
ν

of the business cycle transfers to Θ′(t) = λc + κr2
+, which is also stationary. By

calculating the mean and mode of Θ′(t), we obtain two approximated estimations of period (26) and
(28) in the case of external shock. Figure 1 shows the comparison among T , T1 and T2 as functions of
ε. We can see that T1 and T2 are both larger than T for given an intensity of shock ε, namely that the
period of business cycle may be enlarged due to the external shock. As the intensity of shock
increases, the period of business cycle increases as well. If the intensity of shock satisfies ε2 > 2λr,
the amplitude of the business cycle converges to 0, which means that the economic system converges
to a normalcy (0, 0) (Actually, (0, 0) is not the real normalcy. One could understand this from (3), (4)
and the context).

Figure 1. T , T1 and T2 as functions of ε in the
case of external shock, ε varies from 0.1 to 1,
λr = λc = κ = 1, ν = −1.

In the case of internal shock, if the intensity of shock satisfies ε2 < 2
λr

, the economic system
admits the business cycle whose amplitude and velocity are the same as the original business cycle, so
as the period.
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Figure 2. T , T1 and T2 as functions of ε2 in the case of
external and internal shocks, ε2 varies from 0.1 to 0.7,
ε1 = 0.5, ρ = 0.5, λr = λc = κ = 1, ν = −1.
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Figure 3. T , T1 and T2 as functions of ε1 in the case of
external and internal shocks, ε1 varies from 0.1 to 0.7,
ε2 = 0.5, ρ = 0.5, λr = λc = κ = 1, ν = −1.
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Figure 4. T , T1 and T2 as functions of ε2 in the case of
external and internal shocks, ε2 varies from 0.1 to 0.7,
ε1 = 0.5, ρ = −0.5, λr = λc = κ = 1, ν = −1.
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Figure 5. T , T1 and T2 as functions of ε1 in the case of
external and internal shocks, ε1 varies from 0.1 to 0.7,
ε2 = 0.5, ρ = −0.5, λr = λc = κ = 1, ν = −1.

If the intensity of shock satisfies ε2 > 2
λr

, the business cycle exists in some probability less than
one. The system converges to a normalcy in residual probability. In summary, the system either
behaves periodically or converges to a normalcy. It is uncertain. In the case of external and internal
shocks acting on the system, the effects of shocks on the business cycle are more complicated. If the
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intensities of shocks ε1 and ε2 satisfy 2λr > ε2
1 + 2ε1ε2ρλr + ε2

2λ
2
r , ε2

2ν
2 < 3

2 , the economic system
behaves randomly periodically as the case of external shock, namely that the original amplitude and
velocity both transfer to stationary processes. We as well obtain two approximated periods given in
(43) and (45). Figure 2 and Figure 3 show the comparison among T , T1 and T2 as functions of ε1 and
ε2 respectively under the assumption that external shock and internal shock are positively correlation,
namely that ρ > 0. Figure 4 and Figure 5 show the same topic but under the assumption that external
shock and internal shock are negatively correlation, namely that ρ < 0. From the figures, we can see
that T1 is always larger than T regardless of the correlation of shocks. From Figure 2 and Figure 4,
we can see that T2 may decrease as the intensity ε2 increases. In contrast, T1 increases as ε2 increases.
Figure 3 and Figure 5 tell that both T1 and T2 may increase as the intensity ε1 increases. On the other
hand, from the increasing rate of T1, T2 and decreasing rate of T2 as functions of ε1 and ε2 in the
figures, we can see the sensitivity of the period of the business cycle on the intensities of shocks. If
the intensities of shocks satisfy 2λr < ε2

1 + 2ε1ε2ρλr + ε2
2λ

2
r , ε2

2ν
2 < 3

2 , the economic system converges
to the normalcy. However, if the intensities of shocks satisfy 2λr < ε2

1 + 2ε1ε2ρλr + ε2
2λ

2
r , ε2

2ν
2 > 3

2 ,
the normalcy looses its stability and the system becomes disorder, which may implies the upcoming of
economic crisis.

A. The procedure of simplification of the system

To simplify the original system, denoting Λ = arg(λ), we can rewrite (11) as
ϕ′ =|λ| cos 2πΛϕ − |λ| sin 2πΛφ +

α

2λc
I′′(0)ϕ2 +

α

6λ2
c
I′′′(0)ϕ3,

φ′ =|λ| sin 2πΛϕ + |λ| cos 2πΛφ −
αq
2λ2

c
I′′(0)ϕ2 +

αq
6λ3

c
I′′′(0)ϕ3.

(A.1)

Then making the transformation of coordinates

ϕ =
1
2

z +
1
2

z, φ = −
1
2

zi +
1
2

zi, (A.2)

that is
z = ϕ + φi, z = ϕ − φi, (A.3)

system (A.1) is translated into the following forms: z′ =λz + a20z2 + 2a11zz + a02z2
+ b30z3 + 3b21z2z + 3b12zz2

+ b03z3,

z′ = − λz + a20z2 + 2a11zz + a02z2
+ b30z3 + 3b21z2z + 3b12zz2

+ b03z3,
(A.4)

where
a := a20 = a11 = a02 =

α

8λc
I′′(0) −

α(q + λr)
8λ2

c
I′′(0)i, (A.5)

b := b30 = b21 = b12 = b03 =
α

48λ2
c
I′′′(0) −

α(q + λr)
48λ3

c
I′′′(0)i, (A.6)

Denote h2(z, z) = h220z2 + h211zz + h202z2. Replacing z by z + h2(z, z) gives

z′
(
1 +

∂h2

∂z

)
=λz + λ

∂h2

∂z
z + λh2 + a20z2 + 2a11zz + a02z2

+ O(z3, z3). (A.7)
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Therefore, h2 satisfies

− λ
∂h2

∂z
z + λ

∂h2

∂z
z + λh2 + a20z2 + 2a11zz + a02z2

= 0. (A.8)

It is easy to solve that

h220 =
a20

λ
, h211 = −

2a11

λ
, h202 = −

a02

3λ
. (A.9)

Omitting the high order terms, system (A.4) is translated to

z′ = λz + f30z3 + f21z2z + f12zz2
+ f03z3, (A.10)

where 
f30 = b30 − 2λh2

220 − 2h220a20,

f21 = 3b21 − 5λh220h211 − h211a20 − 4h220a11,

f12 = 3b12 − 6λh220h202 − 2λh2
211 − 2h211a11 − 2h220a02,

f03 = b03 − 3λh211h202 − h211a02.

(A.11)

Repeating the procedure above, denote h3(z, z) = h330z3 + h321z2z + h312zz2
+ h303z3. Replacing z by

z + h3(z, z), then h3 must satisfy

− λ
∂h3

∂z
z + λ

∂h3

∂z
z + λh3 + f30z3 + f21z2z + f12zz2

+ f03z3
= 0. (A.12)

It is easy to solve that

h330 =
f30

2λ
, h321 = 0, h312 = −

f12

2λ
, h303 = −

f03

4λ
. (A.13)

Omitting the high order terms, system (A.10) is translated to

z′ = λz + f21z2z. (A.14)

Recalling that z = ϕ + φi, then we haveϕ′ = λrϕ − λcφ + (νϕ − κφ)(ϕ2 + φ2),
φ′ = λcϕ + λrφ + (κϕ + νφ)(ϕ2 + φ2),

(A.15)

where ν = Re f21, κ = Im f21. From the arguments above, we can get

ν =
αI′′′(0)
16λ2

c
−
α2I′′2(0)
8|λ|2λ2

c

(
2q + λr +

(q + λr)2λr

λ2
c

)
(A.16)

and

κ = −
α(q + λr)I′′′(0)

16λ3
c

+
α2I′′2(0)
4|λ|2λc

(
−

(q + λr)λr

λ2
c

+
(q + λr)2

2λ2
c
−

1
2

)
. (A.17)
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B. Proof of Proposition 3.1

The backward cocycle over θ̃ := θ−1 corresponding to (18) is given by Φ̃(t, ω)r0 := Φ(−t, ω)r0. It
is generated by the stochastic differential equation

d̃r = −λr̃rdt − ν̃r3dt + ε r̃dB(−t). (B.1)

First we restrict system Φ on R+. The Fokker-Plank equations of (18) and (B.1) are given respectively
as

∂

∂t
p(t, r) =

∂2

∂r2

(
ε2

2
r2 p(t, r)

)
−
∂

∂r
((λrr + νr3)p(t, r)) (B.2)

and
∂

∂t
p̃(t, r) =

∂2

∂r2

(
ε2

2
r2 p̃(t, r)

)
+
∂

∂r
((λrr + νr3) p̃(t, r)), (B.3)

whose time-homogeneous solutions can be solved by

p(r) = Cr(2λr−2ε2)/ε2
exp

(
ν

ε2 r2
)
, p̃(r) = Cr−

2λr
ε2 exp

(
−
ν

ε2 r2
)
. (B.4)

Then m(dr) = p(r)dr is the speed measure of Φ, which is an invariant measure of Markov semigroup
Pt associating with (18). m̃(dr) = p̃(r)dr is the speed measure of Φ̃, which is an invariant measure of
Markov semigroup P̃t associating with (B.1). Recall from Chapter 2 in Crauel and Gundlach (1999)
that there is a bijection between the invariant probability measures of the semigroup and the Φ-invariant
measures. If λr <

ε2

2 , m(R+) and m̃(R+) = ∞, which both can not be normalized. We conclude that
there is no other Φ-invariant measures except δ0. To see the stability of invariant measure, we can
calculate the Lyapunov exponent. The linearization of Φ, DΦ(t, r) satisfies

dDΦ(t, r) = (λr + 2νr2)DΦ(t, r)dt + εDΦ(t, r)dB(t) (B.5)

with solution

DΦ(t, r)v = v exp
( ∫ t

0

(
λr −

ε2

2
+ 2νr2(s)

)
ds + εB(t)

)
. (B.6)

The Lyapunov exponent of δ0 satisfies

λΦ(δ0) =lim
t→∞

1
t

log DΦ(t, 0)

=lim
t→∞

1
t

log exp
( ∫ t

0

(
λr −

ε2

2
+ 2ν · 0

)
ds + εB(t)

)
=λr −

ε2

2
< 0,

(B.7)

which implies that δ0 is stable. If λr >
ε2

2 , then m(R+) < ∞ and m̃(R+) = ∞. Moreover, for any
c > 0, m̃(R+/[0, c]) = ∞, which implies that Φ is forward complete (see Lemma 2.6 in Chapter 2
in Crauel and Gundlach (1999)). Hence, there exists a random variable, denoted by r+, such that
δr+(ω) = lim

t→∞
Φ(t, θ̃tω)m/m(R+) is an ergodic Φ-invariant measure. Moreover,

r(ω) = 1/
(
− 2ν

∫ 0

−∞

exp(2λr s − ε2s + 2εB(s))ds
) 1

2

(B.8)
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and

r(θtω) = exp
(
λrt −

ε2

2
t + εB(t)

)
/
(
− 2ν

∫ t

−∞

exp(2λr s − ε2s + 2εB(s))ds
) 1

2

. (B.9)

The system occurs a D-bifurcation at λr = ε2

2 . To see the stability of δr+
, we first give an estimation.

Denote R(r) = r2(t), where r is the solution of (18) with initial value r0 > 0. Then R satisfies

R(t) = exp(2λrt − ε2t + 2εB(t))/
( 1
r2

0

− 2ν
∫ t

0
exp(2λr s − ε2s + 2εB(s))ds

)
. (B.10)

Denote

Z(t) =
1
r2

0

− 2ν
∫ t

0
exp(2λr s − ε2s + 2εB(s))ds. (B.11)

It is easy to see that ∫ t

0
R(s)ds = −

1
2ν

log Z(t) +
1
2ν

log Z(0). (B.12)

By Doob’s inequality

P
(

sup
0≤s≤t
|B(s)| ≥ ht

)
≤ exp

(
−

h2

2
t
)
, ∀h > 0, (B.13)

we have

P
( 1
r2

0

−
2ν

2λr − ε2 exp((2λr − ε
2 − 2εh)t) +

2ν
2λr − ε2 exp(−2εht) ≤ Z(t)

≤
1
r2

0

−
2ν

2λr − ε2 exp((2λr − ε
2 + 2εh)t) +

2ν
2λr − ε2 exp(2εht)

)
≥ 1 − exp

(
−

h2

2
t
)
.

(B.14)

It is easy to see that there exists T > 0, such that for t ≥ T ,

P
(
−

2ν
2λr − ε2 exp((2λr − ε

2 − 2εh)t) ≤ Z(t) ≤ −
2ν

2λr − ε2 exp((2λr − ε
2 + 2εh)t)

)
≥ 1 − exp

(
−

h2

2
t
)
,

(B.15)

that is

P
(
−

1
2ν

log
(
−

2ν
2λr − ε2

)
−

1
2ν

(2λr − ε
2 − 2εh)t ≤ −

1
2ν

log Z(t)

≤ −
1
2ν

log
(
−

2ν
λr − ε2

)
−

1
2ν

(2λr − ε
2 + 2εh)t

)
≥ 1 − exp

(
−

h2

2
t
)
,

(B.16)

which implies

−
1
2ν

(2λr − ε
2 − 2εh) ≤ −

1
2ν

lim
t→∞

1
t

log Z(t) ≤ −
1
2ν

(2λr − ε
2 + 2εh). (B.17)

Since h is arbitrary, we have

lim
t→∞

1
t

∫ t

0
R(s)ds = −

1
2ν

lim
t→∞

1
t

log Z(t) =
1
2ν

(ε2 − 2λr) (B.18)
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almost surely. Applying this result, the Lyapunov exponent of λΦ(δr+
) satisfies

λΦ(δr+
) =lim

t→∞

1
t

log DΦ(t, r+)

=lim
t→∞

1
t

∫ t

0

(
λr −

ε2

2
+ 2νr2

+(θsω)
)
ds

=λr −
ε2

2
+ 2νlim

t→∞

1
t

∫ t

0
r2

+(θsω)ds

=λr −
ε2

2
− 2λr + ε2

= − λr +
ε2

2
< 0,

(B.19)

which implies that δr+
is stable. At the same time, δ0 becomes unstable. If ε2

2 < λr < ε
2, the maximum

of p is located at r = 0. If λr > ε
2, the maximum of p is located at r∗, where

r∗ =

√
ε2 − λr

ν
. (B.20)

Therefore the system occurs a P-bifurcation at λr = ε2. Restricting Φ on R− and following the
arguments above, similarly, we can obtain another ergodic Φ-invariant measure, denoted by δr− , which
is also stable. Hence, we conclude that the system occurs a pitchfork bifurcation at λr = ε2

2 .

C. Proof of Proposition 3.2

Denote R(t) = r2(t). Then by Itô’s formula, we have

dR = R(2 + λrε
2 + ε2νR)(λr + νR)dt + 2εR(λr + νR)dB(t). (C.1)

Denote Y(t) = log R(t)
λr+νR(t) = log R(t) − log(λr + νR(r)). Again by Itô’s formula, we have

dY = (2λr − ε
2λ2

r − 3λrε
2νR)dt + 2ελrdB(t), (C.2)

or

log
R(t)

λr + νR(t)
= log

R0

λr + νR0
+ (2λr − ε

2λ2
r )t − 3λrε

2ν

∫ t

0
R(s)ds + 2ελrB(t), (C.3)

where we have assumed that B(0) = 0. By Doob’s inequality (C.4), we have

P
(

log
R(t)

λr + νR(t)
≥ log

R0

λr + νR0
+ (2λr − ε

2λ2
r )t − 2ελrht

)
≥ 1 − exp

(
−

h2

2
t
)
, (C.4)

where R0 > 0 is the initial condition. Since ε2λr < 2, namely 2λr − ε
2λ2

r > 0 and h > 0 is arbitrary, we
have

lim
t→∞

log
R(t)

λr + νR(t)
≥ log

R0

λr + νR0
+ lim

t→∞
(2λr − ε

2λ2
r − 2ελrh)t = ∞ (C.5)

almost surely, which is possible only if lim
t→∞

R(t) = −λr
ν

almost surely.

Quantitative Finance and Economics Volume 1, Issue 1, 44-66



61

For a function f ∈ C2(R+), by Itô’s formula, we have

d f (R) = f ′(R)dR +
1
2

f ′′(R)d〈R〉

= f ′(R)R(2 + λrε
2 + ε2νR)(λr + νR)dt + 2ε f ′(R)R(λr + νR)dB(t)

+ 2ε2 f ′′(R)R2(λr + νR)2dt.

(C.6)

Letting f satisfy

f ′(R)R(2 + λrε
2 + ε2νR)(λr + νR) + 2ε2 f ′′(R)R2(λr + νR)2 = 0, (C.7)

we can solve that

f (R) =

∫ R

0
x−

(
1

ε2λr
+ 1

2

)(
−
λr

ν
− x

) 1
ε2λr dx. (C.8)

For 0 < R0 < −
λr
ν

,

lim
t→∞
E[ f (R(t))] = f

(
−
λr

ν

)
P
(
R(t)→ −

λr

ν
as t → ∞

)
. (C.9)

On the other hand, since f (R(t)) is a martingale, we have

f (R0) = f
(
−
λr

ν

)
P
(
R(t)→ −

λr

ν
as t → ∞

)
, (C.10)

namely that

P
(
R(t)→ −

λr

ν
as t → ∞

)
= f (R0)/ f

(
−
λr

ν

)
, (C.11)

which implies that

P(R(t)→ 0 as t → ∞) = 1 − f (R0)/ f
(
−
λr

ν

)
. (C.12)

D. Proof of Proposition 3.3

Making the transformation  B1(t) = B̃1(t),

B2(t) = ρB̃1(t) +
√

1 − ρ2B̃2(t),
(D.1)

it is easy to check that 〈B̃1, B̃2〉 = 0, namely that B̃1 and B̃2 are mutually independent Brownian motions.
First equation in system (36) can be rewritten as

dr = r(λr + νr2)dt + (ε1r + ρε2r(λr + νr2))dB̃1(t) +
√

1 − ρ2ε2r(λr + νr2)dB̃2(t), (D.2)

which is equivalent in law to the following equation

dx =

((
λr −

α

2

)
x + (ν − β)x3 −

3
2
γx5

)
dt +

√
αx2 + βx4 + γx6 ◦ dB̃(t), (D.3)

where
α = ε2

1 + 2ε1ε2ρλr + ε2
2λ

2
r , β = 2ε1ε2ρν + 2ε2

2λrν, γ = ε2
2ν

2, (D.4)
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associating with random dynamical system Φ̃ represented by

Ψ(t, ω)x0 =x0 +

∫ t

0

((
λr −

α

2

)
Ψ(s, ω)x0 + (ν − β)Ψ3(s, ω)x0 −

3
2
γΨ5(s, ω)x0

)
ds

+

∫ t

0

√
αΨ2(s, ω)x0 + βΨ4(s, ω)x0 + γΨ6(s, ω)x0 ◦ dB̃(s)

(D.5)

with initial value x0 > 0. The backward cocycle over θ̃ corresponding to (D.5) is given by Ψ̃(t, ω)x0 :=
Ψ(−t, ω)x0, which is generated by the stochastic differential equation

dx̃ =

(
−

(
λr −

α

2

)
x̃ − (ν − β)x̃3 +

3
2
γx̃5

)
dt +

√
αx̃2 + βx̃4 + γx̃6 ◦ dB̃(−t). (D.6)

The Fokker-Plank equations of (D.3) and (D.6) can be written as

∂

∂t
p(t, x) =

∂2

∂x2

(1
2

(αx2 + βx4 + γx6)p(t, x)
)
−
∂

∂x
((λr x + νx3)p(t, x)) (D.7)

and
∂

∂t
p̃(t, x) =

∂2

∂x2

(1
2

(αx2 + βx4 + γx6) p̃(t, x)
)

+
∂

∂x
((λr x + νx3) p̃(t, x)), (D.8)

whose time-homogeneous solutions can be solved by

p(x) =
2√

αx2 + βx4 + γx6
exp

(
2
∫ x

c

(λr −
α
2 )y + (ν − β)y3 − 3

2γy5

αy2 + βy4 + γy6 dy
)

(D.9)

and

p̃(x) =
2√

αx2 + βx4 + γx6
exp

(
2
∫ x

c

−(λr −
α
2 )y − (ν − β)y3 + 3

2γy5

αy2 + βy4 + γy6 dy
)
. (D.10)

m(dx) = p(x)dx is an invariant measure of the Markov semigroup associating with (D.3) and m̃(dx) =

p̃(x)dx is an invariant measure of Markov semigroup associating with (D.6). If x > 0 is small enough,
it is easy to see that

exp
(
2
∫ x

c

(λr −
α
2 )y + (ν − β)y3 − 3

2y5

αy2 + βy4 + γy6 dy
)
≈ exp

(2λr − α

α

∫ x

c

1
y

dy
)

= Cx
2λr−α
α (D.11)

and

exp
(
2
∫ x

c

−(λr −
α
2 )y − (ν − β)y3 + 3

2y5

αy2 + βy4 + γy6 dy
)
≈ exp

(
α − 2λr

α

∫ x

c

1
y

dy
)

= Cx
α−2λr
α , (D.12)

which implies that for x > 0 is small enough, p(x) ≈ Cx
2λr−2α

α and p̃(x) ≈ Cx−
2λr
α . If x > 0 is large

enough, it is easy to see that

exp
(
2
∫ x

c

(λr −
α
2 )y + (ν − β)y3 − 3

2y5

αy2 + βy4 + γy6 dy
)
≈ exp

(
−

3
γ

∫ x

c

1
y

dy
)

= Cx−
3
γ (D.13)
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and

exp
(
2
∫ x

c

−(λr −
α
2 )y − (ν − β)y3 + 3

2y5

αy2 + βy4 + γy6 dy
)
≈ exp

(3
γ

∫ x

c

1
y

dy
)

= Cx
3
γ , (D.14)

which implies that for x > 0 large enough, p(x) ≈ Cx−3− 3
γ and p̃(x) ≈ Cx−3+ 3

γ . If λr >
α
2 , m(R+) < ∞

and m̃(R+) = ∞. If γ < 3
2 , then for any c > 0, m̃(R+/[0, c]) = ∞. From Lemma 2.6 in Chapter 2 in

Crauel and Gundlach (1999), Ψ is forward complete. Hence, there exists a random variable x+ such
that δx+

= lim
t→∞

Ψ(t, θ̃tω)m/m(R+) is an ergodic invariant measure. If λr <
α
2 , γ > 3

2 , then m̃(R+) < ∞
and m(R+) = ∞. But for any c > 0, m(R+/[0, c]) < ∞, which implies that Ψ is not backward complete.
Hence, there is no other invariant measures except δ0. We conclude that system occurs a D-bifurcation
at λr = α

2 , γ = 3
2 . Now let γ < 3

2 . If α
2 < λr < α, the maximum of p is located at 0. If λr > α, the

maximum of p is located at x∗, where x∗ satisfies

3γx4
∗ + (2β − ν)x2

∗ + α − λr = 0, (D.15)

which can be solved as

x∗ =

√
(ν − 2β) +

√
(2β − ν)2 − 12γ(α − λr)

6γ
. (D.16)

We conclude that system occurs a P-bifurcation at λr = α. The aforesaid results for Ψ hold for Φ

as well, namely that Φ occurs D-bifurcation at λr = α
2 , γ = 3

2 . We denote the generated non-trivial
invariant measure as δr+

. Φ occurs P-bifurcation at λr = α, the maximum of the probability density
function is located at r∗ = x∗. To see the stabilities of the invariant measures, we calculate the Lyapunov
exponents. The linearization of Φ, DΦ(t, r) satisfies

dDΦ(t, r) =(λr + 3νr2)DΦ(t, r)dt + (ε1 + ρε2λr + 3ρε2νr2)DΦ(t, r)dB̃1(t)

+
√

1 − ρ2ε2(λr + 3νr2)DΦ(t, r)dB̃2(t).
(D.17)

By Itô’s formula, it is easy to check that

1
t

log DΦ(t, r)v =
1
t

log v + λr + 3ν
1
t

∫ t

0
r2(s)ds −

1
2t

∫ t

0
(ε1 + ρε2λr + 3ρε2νr2(s))2ds

−
1
2

(1 − ρ2)ε2
2

1
t

∫ t

0
(λr + 3νr2(s))2ds

+
1
t

∫ t

0
(ε1 + ρε2λr + 3ρε2νr2(s))dB̃1(s)

+
√

1 − ρ2ε2
1
t

∫ t

0
(λr + 3νr2(s))dB̃2(s)

=
1
t

log V + λr −
α

2
+ 3

(
ν −

β

2

)1
t

∫ t

0
r2(s)ds −

9
2
γ

1
t

∫ t

0
r4(s)ds

+ (ε1 + ρε2λr)
1
t

B̃1(t) + 3ρε2ν
1
t

∫ t

0
r2(s)dB̃1(s)

+
√

1 − ρ2ε2λr
1
t

B̃2(t) + 3
√

1 − ρ2ε2ν
1
t

∫ t

0
r2(s)dB̃2(s).

(D.18)
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Taking logarithm in (D.2) and dividing by t, we have

1
t

log r(t) =
1
t

log r0 + λr + ν
1
t

∫ t

0
r2(s)ds −

1
2t

∫ t

0
(ε1 + ρε2(λr + νr2(s)))2ds

−
1
2

(1 − ρ2)ε2
2

1
t

∫ t

0
(λr + νr2(s))2ds +

1
t

∫ t

0
(ε1 + ρε2(λr + νr2(s)))dB̃1(s)

+
√

1 − ρ2ε2
1
t

∫ t

0
(λr + νr2(s))dB̃2(s)

=
1
t

log r0 + λr −
α

2
+

(
ν −

β

2

)1
t

∫ t

0
r2(s)ds −

γ

2
1
t

∫ t

0
r4(s)ds

+ (ε1 + ρε2λr)
1
t

B̃1(t) + ρε2ν
1
t

∫ t

0
r2(s)dB̃1(s)

+
√

1 − ρ2ε2λr
1
t

B̃2(t) +
√

1 − ρ2ε2ν
1
t

∫ t

0
r2(s)dB̃2(s).

(D.19)

By Doob’s inequality, we know that lim
t→∞

1
t B̃1(t) = lim

t→∞
1
t B̃2(t) = 0 almost surely. Since r+(θtω) is ergodic

and stationary process, letting r(t) = r+(θtω) in (D.19) and t → ∞, we have

lim
t→∞

((
ν −

β

2

)1
t

∫ t

0
r2

+(θsω)ds −
γ

2t

∫ t

0
r4

+(θsω)ds

+ ρε2ν
1
t

∫ t

0
r2

+(θsω)dB̃1(s) +
√

1 − ρ2ε2ν
1
t

∫ t

0
r2

+(θsω)dB̃2(s)
)

=
α

2
− λr

(D.20)

almost surely. If λr >
α
2 , associating with (D.18) and (D.20), we have

lim
t→∞

1
t

log DΦ(t, r+)V = −2
(
λr −

α

2

)
− 3γlim

t→∞

1
t

∫ t

0
r4

+(θsω)ds < 0 (D.21)

almost surely, which implies the stability of the invariant measure δr+
. At the same time, it is easy to

check that
lim
t→∞

1
t

log DΦ(t, 0)V = λr −
α

2
> 0 (D.22)

almost surely, which implies that δ0 is unstable. If λr < α
2 , then δ0 is stable. On the other hand,

restricting Φ on R− and following the arguments above, we obtain another ergodic invariant measure
supporting on R−, which is also stable if λr >

α
2 , γ < 3

2 . We conclude that if γ < 3
2 , system Φ occurs a

pitchfork bifurcation at λr = α
2 .
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