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Three coupled oscillating sectors in a multisector Kaldor-type business cycle model can give rise
to the occurrence of chaotic motion. If the sectors are linked by investment demand
interdependencies, this coupling can be interpreted as a perturbation of a motion on a three-
dimensional torus. A theorem by Newhouse, Ruelle and Takens implies that such a perturbation
may possess a strange attractor with the consequence that the flow of the perturbed system may
become irregular or chaotic. A numerical investigation reveals that parameter values can be
found which indeed lead to chaotic trajectories in this cycle model.

1. Introduction

Recent work on chaos and strange attractors in non-linear dynamical
systems has raised the question whether a ‘route to turbulence’ can be traced
in a continuous-time dynamical system by means of a steady increase of a
control parameter and successive bifurcations with a change of the topo-
logical nature of the trajectories. A famous example for such a route to
turbulence was provided by Ruelle and Takens (1971)': Starting with an
asymptotically stable fixed point for low values of the parameter, the system
undergoes a Hopf bifurcation if the control parameter is sufficiently in-
creased. While a second Hopf bifurcation implies a bifurcation of the
generated limit cycle to a two-dimensional torus, a third Hopf bifurcation
can lead to the occurrence of a strange attractor and hence of chaos.

In the following I show how a very simple multisector Kaldor-type
business cycle model can be constructed which is compatible with this
scenarto. It was demonstrated in the pioneering work by Goodwin (1947)
that the coupling of sectors can imply a dynamic behavior of an economy
which is essentially different from the behavior of isolated sectors. While
Goodwin showed that the coupling of two sectors can decrease the stability

*The author gratefully acknowledges the helpful and encouraging comments by Richard Day,
Ginter Gabisch, Richard Herrmann, Alfredo Medio, and participants in the workshop on
‘Advances in the Analysis of Economic Dynamic Systems’ at the University of Venice. Special
thanks go to David Ruelle for stimulating comments on an earlier version of the paper and to
three anonymous referees for helpful critictsm.

'See Haken (1983) and Eckmann (1981) for surveys of other routes.
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of the sectoral equilibria and may imply persistent fluctuations the present
paper illustrates that regularly oscillating sectors may display chaotic
behavior if they are appropriately coupled.

Section 2 presents a short description of the relation between toroidal
motion and strange attractors. The model is introduced in section 3, and
section 4 contains results of a numerical simulation.

2. Toroidal motion and the occurrence of strange attractors

The concept of strange attractors was introduced by Ruelle and Takens in
1971. Ruelle (1979) defines a strange attractor as follows.

Definition. Consider the n-dimensional dynamical system
x=f(x,p), xeR", ueR. ()

A bounded set 4= R" is a strange attractor for (1) if there is a set U with the
following properties:

(i) U is an n-dimensional neighborhood of 4.

(i) If x(0)e U, then x(t)e UVt >0 and x(t)—>A4, 1., any trajectory approaches
and remains arbitrarily close to A4 for ¢ large enough.

(iii) There is a sensitive dependence on initial conditions when x(0) is in U,
1.e., small variations of the initial value x(0) lead to essentially different
time paths of the system after a short time.

(iv) The attractor is indecomposable.

It is usually difficult to detect the existence of a strange attractor directly
even in the simplest case of a 3-dimensional continuous-time dynamical
system.? However, it is possible to relate the occurrence of strange attractors
to the so-called quasi-periodic motion on an n-dimensional torus with n=3.
The time evolution of a dynamical system (1) is said to be quasi-periodic if
the solution can be written as®

x(t)=Flwt,wt,...,w), xeR", (2)

with w; as independent frequencies and F, as a periodic function of period 2xn
in each of the arguments. -

Consider the n-dimensional system (1) and suppose that a stationary
equilibrium, i.e., x{t) = x}¥ with x;=0V|, exists. Furthermore, suppose that for
u sufficiently low the equilibrium is locally asymptotically stable, i.e., the real
parts of the characteristic roots are all negative. As is well-known the fixed

2Compare, e.g., Arneodo et al. (1982).
3Cf. Ruelle (1979, p. 134).
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point looses its stability and bifurcates into a closed orbit if an increase of
the control parameter p leads to the case in which at u, >0 a pair of
conjugate complex roots with zero real parts occurs and all other eigenvalues
are different from zero.* Provided that the dimension of the system is large
enough and that the orbit is stable for increasing u, a further increase of the
parameter u may give rise to the case that another bifurcation takes place
such that the limit cycle bifurcates into a so-called torus. The torus in fig. 1 is
called a two-dimensional torus because it can be constructed by an appro-
priate glueing of a two-dimensional area. Write T2 for the two-dimensional
torus T2=8'xS! with ' as the unit cycle. Further bifurcations may lead
to the tori T3, T* etc.

It has been conjectured that turbulences can be described by quasi-periodic
motions on high-dimensional tori in which many different and independent
frequencies are involved.” However, a quasi-periodic motion is not sensitive
to initial conditions: a minor variation of the initial state only varies the
frequencies minimally.® The following theorem by Newhouse, Ruelle and
Takens (1978)7 establishes another explanation of turbulence by means of the
notion of strange attractors mentioned above.

Theorem. Let a=(a,,...,a,) be a constant vector field on the torus T". If n
=3, in every C? neighborhood of a there exists an open vector field with a
strange attractor. If n=4, in every C* neighborhood of a there exists an open
vector field with a strange attractor.

In other words, as soon as a dynamical system is quasi-periodic on a 3-
torus, it is thus possible that a perturbation of this system faces a strange
attractor. It may therefore be possible that in some dynamical systems
chaotic behavior already occurs after three subsequent Hopf-bifurcations.

In this context a serious problem usually arises: if an arbitrary n-
dimensional system is considered, the first Hopf-bifurcation is established by
means of an investigation of the eigenvalues of the Jacobian evaluated at
equilibrium. If the system moves on a limit cycle and the bifurcation into a
torus is considered, the Jacobian of this oscillating system is time periodic
and the eigenvalues change over time. Generally, the bifurcation behavior of
this time-period motion can be studied only with the help of Poincaré-maps
and related concepts.® However, this problem does not arise if the dynamical
system consists of coupled non-linear oscillators, te., if an n-dimensional
system can be written as, e.g.,

*See Guckenheimer and Holmes (1983, p. 150ff) or Marsden and McCracken (1976) for this
so-called ‘Hopf-bifurcation’.

See Haken (1983, p. 264) for a description of this ‘Landau-Hopf-route to turbulence.

SCf. Ruelle (1979, p. 135) and Haken (1983, p. 264 f0).

"Newhouse, Ruelle- and Takens (1978) make use of Smale’s so-called ‘Axiom A’ in their

original formulation of the theorem. Compare also Ruelle and Takens (1971, p. 188).
8For an extensive treatment of this subject see Iooss and Joseph (1981).
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Fig. 1. The two-dimensional torus T2 [Source: Haken (1983, p. 29)}.
X+ flx) X+ gdx) = hix;, X)), xeR? i#j, ie[l,n/2], 3)

with f{x;) as appropriate non-linear functions. The coupling is called weakly
linear if h{x; x;) is linear and the coefficients are small. In this case, a torus
arises immediately as the product (§x 8 x---), of the cycles § of the involved
uncoupled oscillators, i.e., with h;=0Vi, and the introduction of the coupling
terms can be considered as a perturbation of the motion on the torus.® The
following model will make use of this geometric description of uncoupled
limit cycle oscillators.

3. A multisector busines cycle model

Consider the well-known non-linear macroeconomic business cycle model
of Kaldor!®

VY=u(I(Y,K)-S(Y)), K=IY,K)-dK, 4

with Y as the real gross product, K as the capital stock, I and S as gross
investment and savings, respectively, and ¢ as the depreciation rate. The
parameter o is the adjustment coefficient in the goods market, savings
depends positively on output, and Ix<0. Further, investment depends on
output in the well-known sigmoid form.

The model has been analyzed extensively in the literature. Chang and
Smyth (1971) investigated the limit cycle behavior of the model by means of
the Poincaré—Bendixson theorem, while Cugno and Montrucchio (1982)
provided an elaborated discussion of the bifurcation behavior of the
continuous-time version (4). It was shown by Dana and Malgrange (1984)
that a discrete version of the Kaldor-model is able to display chaotic
dynamics.'' They demonstrated that an increase of the adjustment coefficient
o generates a dynamic behavior which is characterized by succeedingly stable
fixed points, closed orbits, and finally chaos. Because of the impressive

°Cf. Guckenheimer and Holmes (1983), p. 59f and Rand and Holmes (1980) for this
procedure.

19Cf. Kaldor (1940). Kaldor also assumes a dependence of savings on the capital stock, which

is not essential to the model and which is consequently dropped in the following.
“'For a similar simulation that makes use of another investment function see Lorenz (1985).
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demonstration of the influence of « on the dynamic behavior of the Kaldor-
model, the following multisector model will also use the adjustment coeffi-
cient as the bifurcation parameter.

Consider an economy with the three sectors i=1,2,3. Let Y; and K; denote
gross output and capital in each of the sectors. As before, let gross
investment in each sector be dependent on output and capital in that sector
in the Kaldorian way

L=I{Y,K), =123 (3)

The capital stocks in all three sectors thus develop according to the
equations

Ki:Ii(YiyKi)-éiKi, i=1,2,3. (6)

Suppose that a part of the investment demand of sector i does not consist of
produced goods of sector i but is delivered by other sectors. Write 1(Y, K,)
for the part of total investment demand of sector i for goods produced in i,
and [{ as the part which is effective in sector j. Assume for the sake of
simplicity that I depends on Y; only and that it can be expressed as a linear
function, ie., dl{/dY;=b;=const.'* Total investment demand of sector i,
which is effective in sector i or j, is therefore given by

I K)=T(Y,K)+ Y I(Y),  j#i o

Denote the actual investment demand for the produced goods of sector i as
I¢, consisting of the internal investment demand /{Y;, K;) and the investment
demand of the sectors for goods of i, i.e., I(Y))

I(Y,, Yo, Ya) = I{Y, Kj) + 3 I Y)
j
ZI::(Yi7Ki)+Zbin;'7 ]3‘/:1 (8)
J

Assume further that these investment demand interdependencies are unidirec-
tional in the sense that every sector demands investment goods only from
sectors with indexes lower than its own, i.e.'?

'This simplifying assumption does not alter the basic analytical result presented below but is
convenient in the numerical simulation of section 4.

'3This triangular form of the matrix {b;} is not as pathological as it may seem. In the input-
output literature, it is usually attempted to triangulate the I-O-matrixes by a re-ordering of the
sectors such that the investment goods industries and the consumption goods industries
constitute the first and the last sectors, resp., in the ordering. For details on this triangulation
see Helmstidter (1962), Chenery and Watanabe (1958) and Aujac (1960). In face of the
empirically observable evidence of a tendency toward a triangular form of I-O-matrixes, Aujac
(1960) even proposed to replace the common expression ‘interdependencies’ by ‘dependencies’ in
empirical I-O-studies. The ordering i=1,2,3 with the matrix {b,;} may thus be considered as the
outcome of such a triangulation procedure. Note that this triangular form corresponds with
Goodwin’s unilateral coupling, cf., Goodwin (1947).
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=0 if i<j
i]{ (9)

=0 if i>j.

With I4(Y,,Y,,Y;) as the demand for investment goods produced in i, excess
demand in sector i is given as Y,—C{(Y)—I%Y,,Y,, Y;) such that the output

t

adjustment equation in sector i reads

Yi = “i(ld( Y, V), Y3) = S8(Y)
=°‘i(’§(Yi’K1‘)“Si(Yi)+Zbinj>a (10

with i=1,2,3 and i+ j. Eqgs. (10) and (6) together with (9) constitute the six-
dimensional continuous-time dynamical system {11)

Y;:di(

Kizli(y;'aKi)_5iKi:Ig(Yi5Ki)+ijiYi—5iKi’ (11a)
i

Ii(Yi,Ki)~Si(1’i)+Zbinj),
j

with i, j=1,2,3 and i+ j, or, explicitly written,
Vi=o,(I1(Y,, Ky\) =Sy (Y) + b, Yo+ b5 Y3),
Klzli(YxaKJ*élKl,

Yz = az“%( Yy, K3) = S,(Y,) + b, Y3),

(11b)
K, =15(Y,, Ky)+ by, Y, —6,K,,
¥y =a3(I3(Y;, K3) — S5( 1)),
Ky=I3(Y5, K3)+by3 Y3 +by3 Y — 55K,
Consider the case in which no intersectoral trade takes place, i.e.,
Yi = ai(lg( Y, K;)—S(Y)),
(12)

Kizlf'(y'i’Ki)—aiKi’
and let J; be the Jacobian matrixes of each sector i of (12).

Assumption. (i) There exists a Hopf-bifurcation value of «; in each sector i
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described by (12), ie., trJ;=0,detJ;>0, and d(tr J;)/do; >0, evaluated at the
bifurcation value of «;. (ii) The bifurcations are supercritical, i.e., the emerging
closed orbits are stable for increasing «;.

If the assumptions are fulfilled every sector will be oscillating for appropriate
parameter values. Note that this implies the possibility of economically self-
sustaining sectors.’*

It is now possible to suggest the following corollary to the Newhouse,
Ruelle and Takens theorem:

Proposition. If all three sectors in the uncoupled system (12) are oscillating
the introduction of intersectoral trade may imply the occurrence of a strange
attractor.

The three different uncoupled two-dimensional limit cycle oscillators in (12)
constitute a three-dimensional torus, ie., a three-dimensional object in six-
dimensional space. The coupled system (11) with intersectoral trade can be
interpreted as a perturbation of the uncoupled system (12). The Newhouse,
Ruelle and Takens theorem therefore implies the possible occurrence of a
strange attractor in the coupled system (11).

Whether or not the coupled system (11) indeed possesses a strange
attractor depends on the assumed structural forms of the involved functions
and the specific numerical parameter values. Any model which attempts to
establish the existence of chaotic dynamics via the Newhouse, Ruelle and
Takens scenario must therefore finally refer to a numerical simulation.

4. A numerical simulation

The continuous-time dynamical system (11) has been numerically simu-
lated by the use of a standard Runge-Kutta algorithm. The algebraic
specifications of the involved functions have arbitrarily been chosen and do
not represent a limitation of the results.

All three sectors are assumed to be identical with numerically identical
investment functions which feature the properties of Kaldorian functions. The
adjustment coefficients «; are the same in all three sectors, and 6;>4d,>6,
such that the Hopf bifurcation values are different in the three sectors.!’

!“While no explicit production function has been introduced in the present rudimentary
multisector model, this oscillation property implies that external investment goods are not
exclusively necessary in the production process and that they can be substituted by sector-
specific goods, i.e., every sector produces goods which can be consumed or invested.

'5The notation of the simulated model differs slightly from that of the model presented above:
the ratio s in the output adjustment equation of the simulation is defined as the sum of the
marginal savings rate and that part of sector i's investment demand which is effective in other

markets. A constant ratio s in the simulation therefore implies varying savings rates when the
b;/’s are changing.
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The analytical considerations above indicate that for increasing values of
the adjustment coefficient o the equilibria in the three sectors become
unstable and that the system oscillates. For values of o greater than the
bifurcation value of the third sector, the dynamic behavior of the first two
sectors is characterized either by quasi-periodic or by chaotic behavior,'¢
while the third sector can only oscillate in a limit cycle manner.

The results of the simulation are illustrated in figs. 2-6.17 The parameters
of the investment function, the savings rate, the depreciation rates and the
initial values were held constant in every simulation run in order to allow a
comparison of the effects of a varied adjustment coefficient « and the
coupling terms b;;.

While the uncoupled system is characterized by convergence to the
stationary equilibria for low values of a, further increases of a beyond a~ 1.7
in this numerically specified example lead to the occurrence of cyclical
motions in all three sectors. If positive but small coupling terms b;;>0 are
introduced and if the adjustment parameter a is increased the dynamic
behavior of the first two sectors appears to be irregular. Figs. 2 and 3 show
the result for «=35.0 and identical numerical values of the involved coupling
terms of 0.015. In addition to the illustrations of the motion of output and
capital in the three sectors, an extract of the development of Y, vs. time and
a projection of the co-movements of output in all three sectors is plotted in
fig. 3. The third sector is of course characterized by a limit cycle behavior,
because this sector is not influenced by the developments in the other two
sectors. In figs. 2 and 3, the trajectories switch irregularly and seemingly
arbitrarily between inner and outer regions of the attractor, suggesting the
presence of chaotic motion. However, these graphical illustrations of the
motion are not sufficient to prove the existence of chaos numerically. Fig. 4
represents the power spectra!® of the generated time series for the parameter
constellation in figs. 2 and 3. While the sharp peaks in the power spectra of
Y; and K, indicate harmonic oscillation with associated harmonics, the
power spectra of Y, and (though less distinct) of K, are similar to broad
band noise for low frequencies, implying that the motion is indeed chaotic.
As has to be expected, the power spectra of Y, and K, still exhibit sharp
peaks at certain frequencies of approximately equal distance such that the
motion is not chaotic.

This dynamic behavior prevails for decreasing values of the involved b;/’s.
If the coupling terms are increased in comparison to the parameter constel-
lation in figs. 2-4, the dynamic behavior of the first sector can become quasi-
periodic for certain parameter values. While the trajectories in Y;, K,-space

161t has been stressed that pure quasi-periodic motions on a 3-torus are usually unobservable
érllgg);;)e;inglemal investigations of dynamical systems in various disciplines. Compare Swinney

'7A more complete list of results is available on request.
"8Cf. Granger and Hatanaka (1964) for the concept of power spectra in time series analysis.
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in the previous examples all describe broad bands with possibly additional
loops as in fig. 2, fig. 5 shows an example of an increase in the coupling
terms that leads to a relatively thin band of trajectories performing several
loops. The associated power spectra in fig. 6 display distinguishable single
peaks in the first sector and are similar to the spectra of the second sector.
The same phenomenon can be observed when the adjustment coefficient « is
considerably increased.

5. Conclusion

It has been demonstrated that it is possible to construct a simple
multisector business cycle model in which chaotic dynamics may emerge. The
example should only be considered as a demonstration of the underlying
mechanisms, and the absence of production functions or the assumption of
possibly autarchic sectors are clearly shortcomings which prevent a com-
parison with other multisector models. However, the results suggest that the
method of detecting strange attractors via toroidal motions can be applied to
various fields in economics: as soon as oscillators are coupled in the
described way in, e.g., international trade theory,!® the possible occurrence of
strange attractors and chaos has to be taken into account.

19Cf. Lorenz (1987).
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