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Three coupled oscillating sectors in a multisector Kaldor-type business cycle model can give rise 
to the occurrence of chaotic motion. If the sectors are linked by investment demand 
interdependencies, this coupling can be interpreted as a perturbation of a motion on a three- 
dimensional torus. A theorem by Newhouse, Ruelle and Takens implies that such a perturbation 
may possess a strange attractor with the consequence that the flow of the perturbed system may 
become irregular or chaotic. A numerical investigation reveals that parameter values can be 
found which indeed lead to chaotic trajectories in this cycle model. 

1. Introduction 

Recent work on chaos and strange attractors in non-linear dynamical 
systems has raised the question whether a ‘route to turbulence’ can be traced 
in a continuous-time dynamical system by means of a steady increase of a 
control parameter and successive bifurcations with a change of the topo- 
logical nature of the trajectories. A famous example for such a route to 
turbulence was provided by Ruelle and Takens (1971)‘: Starting with an 
asymptotically stable fixed point for low values of the parameter, the system 
undergoes a Hopf bifurcation if the control parameter is sufficiently in- 
creased. While a second Hopf bifurcation implies a bifurcation of the 
generated limit cycle to a two-dimensional torus, a third Hopf bifurcation 
can lead to the occurrence of a strange attractor and hence of chaos. 

In the following I show how a very simple multisector Kaldor-type 
business cycle model can be constructed which is compatible with this 
scenario. It was demonstrated in the pioneering work by Goodwin (1947) 
that the coupling of sectors can imply a dynamic behavior of an economy 
which is essentially different from the behavior of isolated sectors. While 
Goodwin showed that the coupling of two sectors can decrease the stability 

*The author gratefully acknowledges the helpful and encouraging comments by Richard Day, 
Giinter Gabisch, Richard Herrmann, Alfred0 Medio, and participants in the workshop on 
‘Advances in the Analysis of Economic Dynamic Systems’ at the University of Venice. Special 
thanks go to David Ruelle for stimulating comments on an earlier version of the paper and to 
three anonymous referees for helpful criticism. 

‘See Haken (1983) and Eckmann (1981) for surveys of other routes. 
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of the sectoral equilibria and may imply persistent fluctuations the present 
paper illustrates that regularly oscillating sectors may display chaotic 
behavior if they are appropriately coupled. 

Section 2 presents a short description of the relation between toroidal 
motion and strange attractors. The model is introduced in section 3, and 
section 4 contains results of a numerical simulation. 

2. Toroidal motion and the occurrence of strange attractors 

The concept of strange attractorS was introduced by Ruelle and Takens in 
1971. Ruelle (1979) defines a strange attractor as follows. 

Dejnition. Consider the n-dimensional dynamical system 

?;- = S(x, p), XER", PER. (1) 

A bounded set A c R” is a strange attractor for (1) if there is a set U with the 
following properties: 

(i) CT is an n-dimensional neighborhood of A. 
(ii) If x(0) E U, then x(t)E UVt >O and x(t)-+A, i.e., any trajectory approaches 

and remains arbitrarily close to A for t large enough. 
(iii) There is a sensitive dependence on initial conditions when x(O) is in U, 

i.e., small variations of the initial value x(0) lead to essentially different 
time paths of the system after a short time. 

(iv) The attractor is indecomposable. 

It is usually difficult to detect the existence of a strange attractor directly 
even in the simplest case of a 3-dimensional continuous-time dynamical 
system.2 However, it is possible to relate the occurrence of strange attractors 
to the so-called quasi-periodic motion on an n-dimensional torus with nz 3. 
The time evolution of a dynamical system (1) is said to be quasi-periodic if 
the solution can be written as3 

x(t) = Fk(Olt, w,t, . . , ) q(t), XER”, 

with wi as independent frequencies and F, as a periodic function of period 27c 
in each of the arguments. 

Consider the n-dimensional system (1) and suppose that a stationary 
equilibrium, i.e., xi(t) = XT with li = 0 Vi, exists. Furthermore, suppose that for 
p sufficiently low the equilibrium is locally asymptotically stable, i.e., the real 
parts of the characteristic roots are all negative. As is well-known the fixed 

*Compare, e.g., Arneodo et al. (1982). 
‘Cf. Ruelle (1979, p. 134). 
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point looses its stability and bifurcates into a closed orbit if an increase of 

the control parameter ,U leads to the case in which at pi >O a pair of 
conjugate complex roots with zero real parts occurs and all other eigenvalues 
are different from zero.4 Provided that the dimension of the system is large 
enough and that the orbit is stable for increasing ,u, a further increase of the 
parameter ,U may give rise to the case that another bifurcation takes place 
such that the limit cycle bifurcates into a so-called torus. The torus in fig. 1 is 
called a two-dimensional torus because it can be constructed by an appro- 
priate glueing of a two-dimensional area. Write TZ for the two-dimensional 
torus T2 =S’ x S’ with S’ as the unit cycle. Further bifurcations may lead 
to the tori T3, T4 etc. 

It has been conjectured that turbulences can be described by quasi-periodic 
motions on high-dimensional tori in which many different and independent 
frequencies are involved.5 However, a quasi-periodic motion is not sensitive 
to initial conditions: a minor variation of the initial state only varies the 
frequencies minimally.6 The following theorem by Newhouse, Ruelle and 
Takens (1978)’ establishes another explanation of turbulence by means of the 
notion of strange attractors mentioned above. 

Theorem. Let a = (a,, . . , a,,) be a constant vector field on the torus T”. Zf n 

= 3, in every C2 neighborhood of a there exists an open vector field with a 

strange attractor. If nL4, in every C” neighborhood of a there exists an open 

vector field with a strange attractor. 

In other words, as soon as a dynamical system is quasi-periodic on a 3- 
torus, it is thus possible that a perturbation of this system faces a strange 
attractor. It may therefore be possible that in some dynamical systems 
chaotic behavior already occurs after three subsequent Hopf-bifurcations. 

In this context a serious problem usually arises: if an arbitrary n- 

dimensional system is considered, the first Hopf-bifurcation is established by 
means of an investigation of the eigenvalues of the Jacobian evaluated at 
equilibrium. If the system moves on a limit cycle and the bifurcation into a 
torus is considered, the Jacobian of this oscillating system is time periodic 
and the eigenvalues change over time. Generally, the bifurcation behavior of 
this time-period motion can be studied only with the help of Poincart-maps 
and related concepts.’ However, this problem does not arise if the dynamical 
system consists of coupled non-linear oscillators, i.e., if an n-dimensional 
system can be written as, e.g., 

%ee Guckenheimer and Holmes (1983, p. 15Off) or Marsden and McCracken (1976) for this 
so-called ‘Hopf-bifurcation’. 

5See Haken (1983, p. 264) for a description of this ‘Landau-Hopf-route to turbulence. 
‘Cf. Ruelle (1979, p. 135) and Haken (1983, p. 264ff). 
‘Newhouse, Ruelle and Takens (1978) make use of Smale’s so-called ‘Axiom A’ in their 

original formulation of the theorem. Compare also Ruelle and Takens (1971, p. 188). 
‘For an extensive treatment of this subject see Iooss and Joseph (1981). 
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Fig. 1. The two-dimensional torus T2 [Source: Haken (1983, p. 29)). 

jl-i + fi(Xi)i;-i +gi(Xi) =hi(Xi, Xj), XER2, i#j, iECL@l, 

with fi(xJ as appropriate non-linear functions. The coupling is called weakly 
linear if hi(xi,xj) is linear and the coefficients are small. In this case, a torus 
arises immediately as the product (S x S x . . .), of the cycles S of the involved 
uncoupled oscillators, i.e., with h,=OVi, and the introduction of the coupling 
terms can be considered as a perturbation of the motion on the torus.’ The 
following model will make use of this geometric description of uncoupled 
limit cycle oscillators. 

3. A multisector busines cycle model 

Consider the well-known non-linear macroeconomic business cycle model 
of Kaldor” 

P = a( I( y, K) - S( Y)), R=I(I:K)-6K, (4) 

with Y as the real gross product, K as the capital stock, I and S as gross 
investment and savings, respectively, and 6 as the depreciation rate. The 
parameter CI is the adjustment coefficient in the goods market, savings 
depends positively on output, and I, ~0. Further, investment depends on 
output in the well-known sigmoid form. 

The model has been analyzed extensively in the literature. Chang and 
Smyth (1971) investigated the limit cycle behavior of the model by means of 
the Poincare-Bendixson theorem, while Cugno and Montrucchio (1982) 
provided an elaborated discussion of the bifurcation behavior of the 
continuous-time version (4). It was shown by Dana and Malgrange (1984) 
that a discrete version of the Kaldor-model is able to display chaotic 
dynamics.’ ’ They demonstrated that an increase of the adjustment coefficient 
c( generates a dynamic behavior which is characterized by succeedingly stable 
fixed points, closed orbits, and finally chaos. Because of the impressive 

‘%X. Guckenheimer and Holmes (1983) p. 59f. and Rand and Holmes (1980) for this 
procedure. 

“Cf. Kaldor (1940). Kaldor also assumes a dependence of savings on the capital stock, which 
is not essential to the model and which is consequently dropped in the following. 

“For a similar simulation that makes use of another investment function see Lorenz (1985). 
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demonstration of the influence of M on the dynamic behavior of the Kaldor- 
model, the following multisector model will also use the adjustment coefli- 
cient as the bifurcation parameter. 

Consider an economy with the three sectors i = 1,2,3. Let x and Ki denote 
gross output and capital in each of the sectors. As before, let gross 
investment in each sector be dependent on output and capital in that sector 
in the Kaldorian way 

Ii = ri( ~, Ki), i=1,2,3. (5) 

The capital stocks in all three sectors thus develop according to the 
equations 

riri = Ii( Y, Ki) - GiKi, i=1,2,3. (6) 

Suppose that a part of the investment demand of sector i does not consist of 
produced goods of sector i but is delivered by other sectors. Write Zi(Y,Ki) 
for the part of total investment demand of sector i for goods produced in i, 

and lj as the part which is effective in sector j. Assume for the sake of 
simplicity that Ij depends on x only and that it can be expressed as a linear 
function, i.e., dI{/dx= bji=const.‘* Total investment demand of sector i, 

which is effective in sector i or j, is therefore given by 

Ii( Y, Ki) = I!( & Ki) + 1 Zi( y,), j# i. (7) 
j 

Denote the actual investment demand for the produced goods of sector i as 
14, consisting of the internal investment demand Zi( x, Ki) and the investment 
demand of the sectors for goods of i, i.e., Z:(q) 

I?( YI, Y*, Y,) = I!( & Ki) + 1 Zf( rj) 
j 

= I;( x, Ki) + c bij I;, j# i. 
i 

Assume further that these investment demand interdependencies are unidirec- 
tional in the sense that every sector demands investment goods only from 
sectors with indexes lower than its own, i.e.,r3 

“This simplifying assumption does not alter the basic analytical result presented below but is 
convenient in the numerical simulation of section 4. 

13This triangular form of the matrix {bij} is not as pathological as it may seem. In the input- 
output literature, it is usually attempted to triangulate the I-O-matrixes by a re-ordering of the 
sectors such that the investment goods industries and the consumption goods industries 
constitute the first and the last sectors, resp., in the ordering. For details on this triangulation 
see Helmstadter (1962), Chenery and Watanabe (1958) and Aujac (1960). In face of the 
empirically observable evidence of a tendency toward a triangular form of I-O-matrixes, Aujac 
(1960) even proposed to replace the common expression ‘interdependencies’ by ‘dependencies’ in 
empirical ILO-studies. The ordering i= 1,2,3 with the matrix {bij} may thus be considered as the 
outcome of such a triangulation procedure. Note that this triangular form corresponds with 
Goodwin’s unilateral coupling, cf., Goodwin (1947). 



402 H.-W Lorenz, Strange attractors in a multisector business cycle model 

bij 

i 

20 if i< j 

=0 if i> j. 
(9) 

With I:( Y,, Y2, Y,) as the demand for investment goods produced in i, excess 
demand in sector i is given as yi - Ci( Y) -Zt( Y,, Y,, Y,) such that the output 
adjustment equation in sector i reads 

x = Ui(Id( Y,, Y2, Y,) - Si( r,)) 

=c(i ri(~,Ki)-Si(yi)+CbijE; ) ( 1 (10) 
j 

with i= 1,2,3 and i# j. Eqs. (10) and (6) together with (9) constitute the six- 
dimensional continuous-time dynamical system (11) 

t=ai f$r;.,Ki)-Si(~)+~bij~ , 
j > 

with i, j= 1,2,3 and i# j, or, explicitly written, 

~~=2,(z:(Y,,K,)-S,(Y,)+b,,Y,+b,,Y,), 

G=~:(Y,,~,)-~,&, 

% = M:( Yz> K,) - SAY,) + b,, YA 

~,=I:(Y,,K,)+b,2Y2-62K2, 

% = Mj,( r,, K3) - S,( y3)), 

R,=I:(Y,,K,)+b,3Y3+b23Y3-63K3. 

Consider the case in which no intersectoral trade takes place, i.e., 

x = cc,(lf( yi, Ki) - Si( r,)), 

Iti = Zj( yi, Ki) - GiKi, 

and let Ji be the Jacobian matrixes of each sector i of (12). 

(114 

Ulb) 

(12) 

Assumption. (i) There exists a Hopf-bifurcation value of Cli in each sector i 
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described by (12), i.e., trJ;=O,det Ji>O, and d(trJJ/dq>O, evaluated at the 
bifurcation value of xi. (ii) The bifurcations are supercritical, i.e., the emerging 

closed orbits are stable for increasing Cli. 

If the assumptions are fulfilled every sector will be oscillating for appropriate 
parameter values. Note that this implies the possibility of economically self- 
sustaining sectorsi 

It is now possible to suggest the following corollary to the Newhouse, 
Ruelle and Takens theorem: 

Proposition. If all three sectors in the uncoupled system (12) are oscillating 
the introduction of intersectoral trade may imply the occurrence of a strange 
attractor. 

The three different uncoupled two-dimensional limit cycle oscillators in (12) 
constitute a three-dimensional torus, i.e., a three-dimensional object in six- 
dimensional space. The coupled system (11) with intersectoral trade can be 
interpreted as a perturbation of the uncoupled system (12). The Newhouse, 
Ruelle and Takens theorem therefore implies the possible occurrence of a 
strange attractor in the coupled system (11). 

Whether or not the coupled system (11) indeed possesses a strange 
attractor depends on the assumed structural forms of the involved functions 
and the specific numerical parameter values. Any model which attempts to 
establish the existence of chaotic dynamics via the Newhouse, Ruelle and 
Takens scenario must therefore finally refer to a numerical simulation. 

4. A numerical simulation 

The continuous-time dynamical system (11) has been numerically simu- 
lated by the use of a standard Runge-Kutta algorithm. The algebraic 
specifications of the involved functions have arbitrarily been chosen and do 
not represent a limitation of the results. 

All three sectors are assumed to be identical with numerically identical 
investment functions which feature the properties of Kaldorian functions. The 
adjustment coefficients cli are the same in all three sectors, and 6, >6, > 6, 
such that the Hopf bifurcation values are different in the three sectors.r5 

r4While no explicit production function has been introduced in the present rudimentary 
multisector model, this oscillation property implies that external investment goods are not 
exclusively necessary in the production process and that they can be substituted by sector- 
specific goods, i.e., every sector produces goods which can be consumed or invested. 

IsThe notation of the simulated model differs slightly from that of the model presented above: 
the ratio s in the output adjustment equation of the simulation is defined as the sum of the 
marginal savings rate and that part of sector i’s investment demand which is effective in other 
markets. A constant ratio s in the simulation therefore implies varying savings rates when the 
b,‘s are changing. 
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The analytical considerations above indicate that for increasing values of 
the adjustment coefficient c1 the equilibria in the three sectors become 
unstable and that the system oscillates. For values of a greater than the 
bifurcation value of the third sector, the dynamic behavior of the first two 
sectors is characterized either by quasi-periodic or by chaotic behavior,16 
while the third sector can only oscillate in a limit cycle manner. 

The results of the simulation are illustrated in figs. 2-6.” The parameters 
of the investment function, the savings rate, the depreciation rates and the 
initial values were held constant in every simulation run in order to allow a 
comparison of the effects of a varied adjustment coefficient a and the 
coupling terms bij 

While the uncoupled system is characterized by convergence to the 
stationary equilibria for low values of a, further increases of a beyond C(Z 1.7 
in this numerically specified example lead to the occurrence of cyclical 
motions in all three sectors. If positive but small coupling terms bij> 0 are 
introduced and if the adjustment parameter CI is increased the dynamic 
behavior of the first two sectors appears to be irregular. Figs. 2 and 3 show 
the result for a= 5.0 and identical numerical values of the involved coupling 
terms of 0.015. In addition to the illustrations of the motion of output and 
capital in the three sectors, an extract of the development of Y1 vs. time and 
a projection of the co-movements of output in all three sectors is plotted in 
fig. 3. The third sector is of course characterized by a limit cycle behavior, 
because this sector is not influenced by the developments in the other two 

sectors. In figs. 2 and 3, the trajectories switch irregularly and seemingly 
arbitrarily between inner and outer regions of the attractor, suggesting the 
presence of chaotic motion. However, these graphical illustrations of the 
motion are not sufficient to prove the existence of chaos numerically. Fig. 4 
represents the power spectra I* of the generated time series for the parameter 
constellation in figs. 2 and 3. While the sharp peaks in the power spectra of 
Y, and K, indicate harmonic oscillation with associated harmonics, the 
power spectra of Y, and (though less distinct) of K, are similar to broad 
band noise for low frequencies, implying that the motion is indeed chaotic. 
As has to be expected, the power spectra of Y2 and K, still exhibit sharp 
peaks at certain frequencies of approximately equal distance such that the 
motion is not chaotic. 

This dynamic behavior prevails for decreasing values of the involved bij’s. 
If the coupling terms are increased in comparison to the parameter constel- 
lation in figs. 24, the dynamic behavior of the first sector can become quasi- 
periodic for certain parameter values. While the trajectories in Y,,K,-space 

161t has been stressed that pure quasi-periodic motions on a 3-torus are usually unobservable 
in experimental investigations of dynamical systems in various disciplines. Compare Swinney 
(1983), p. 8. 

“A more complete list of results is available on request. 
“Cf. Granger and Hatanaka (1964) for the concept of power spectra in time series analysis. 
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in the previous examples all describe broad bands with possibly additional 
loops as in fig. 2, fig. 5 shows an example of an increase in the coupling 
terms that leads to a relatively thin band of trajectories performing several 
loops. The associated power spectra in fig. 6 display distinguishable single 
peaks in the first sector and are similar to the spectra of the second sector. 
The same phenomenon can be observed when the adjustment coefficient c1 is 
considerably increased. 

5. Conclusion 

It has been demonstrated that it is possible to construct a simple 
multisector business cycle model in which chaotic dynamics may emerge. The 
example should only be considered as a demonstration of the underlying 

mechanisms, and the absence of production functions or the assumption of 
possibly autarchic sectors are clearly shortcomings which prevent a com- 
parison with other multisector models. However, the results suggest that the 
method of detecting strange attractors via toroidal motions can be applied to 
various fields in economics: as soon as oscillators are coupled in the 

described way in, e.g., international trade theory,lg the possible occurrence of 
strange attractors and chaos has to be taken into account. 
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