
Notes on Shaking Pendulum

A. Equation of a shaking pendulum: Let
(x, y) be a fixed coordinate frame. The end of
a pendulum moving in the y-direction period-
ically. The movement is with a magnitude A

and a frequency ω. Let ℓ be the length of the
pendulum and φ be the angle in between the
pendulum and the y-axis. For the pendulum
we have

y = ℓ cosφ + Acosωt, x = ℓ sinφ.

From which we obtain

ẏ = −ℓ sinφφ̇ − Aω sinωt

ÿ = −ℓ cosφ(φ̇)2 − ℓ sinφφ̈ − Aω2 cosωt

ẋ = ℓ cosφφ̇

ẍ = −ℓ sinφ(φ̇)2 + ℓ cosφφ̈.

Use the second law of mechanics F = ma and
decompose into x and y direction, we obtain

g −

T

m
cosφ = −ℓ cosφ(φ̇)2 − ℓ sinφφ̈ − Aω2 cosωt

−

T

m
sinφ = −ℓ sinφ(φ̇)2 + ℓ cosφφ̈



where T is the magnitude of the force of ten-

sion on the pendulum. Multiply the first equa-

tion by sinφ, the second by cosφ. Subtract the

second from the first, we obtain

φ̈ + (
g

ℓ
+

Aω2

ℓ
cosω) sinφ = 0 (1)

It is important to remember that we are con-

sidering the case in which

A << ℓ << ω

This is to say, we regard ℓ, g as constants of

normal size, comparing to which A is very small

and ω is very large.

B. Analysis: We guess that a solution of

equation (1) is roughly the sum of two func-

tions: one is fast shaking with a small magni-

tude, which we denote as ε(t) and the other



is slowly oscillating, which we denote as f(t).

We write

φ = f(t) + ε(t).

We put it into equation (1) to obtain

f̈ + ε̈ = −(
g

ℓ
+

Aω2

ℓ
cosω) sin(f + ε)

≈ −(
g

ℓ
+

Aω2

ℓ
cosω)(sin f + ε cos f)

= −

g

ℓ
sin f −

Aω2

ℓ
cosωt sin f − ε

g

ℓ
cos f

− ε
Aω2

ℓ
cosωt cos f

Let us now try to split this equation into two

as follows: we let

ε̈ = −

Aω2

ℓ
cosωt sin f

f̈ = −

g

ℓ
sin f − ε

g

ℓ
cos f

− ε
Aω2

ℓ
cosωt cos f

(2)



First let us see if we can make sense of the

first equation. Since ε(t) changes real fast,

and f(t) slowly, we can then regard f as a

constant when consider ε(t). Regarding f as

a constant, we can easily obtain a solution of

the first equation as

ε(t) =
A

ℓ
sin fcosωt

This function is a fast shake with a small mag-

nitude.

Putting ε(t) back into the second equation we

obtain

f̈ = −

g

ℓ
sin f −

gA

ℓ2
cosωt sin f cos f

−

A2ω2

ℓ2
cos2ωt sin f cos f

(3)

C. Result of averaging: Equation (3) de-

fines a 2D vector field that is time dependent.



To use the analysis of 2D systems we first re-

place the time-dependent vector field with an

averaged vector field. Recall that for a func-

tion P (t), the average is

P̄ = lim
T→∞

1

2T

∫ T

−T
P (t)dt

Taking the average on the right of equation

(3), we obtain

f̈ = −

1

2T

∫ T

−T

g

ℓ
sin fdt

−

1

2T

∫ T

−T

gA

ℓ2
cosωt sin f cos fdt

−

1

2T

∫ T

−T

A2ω2

ℓ2
cos2ωt sin f cos fdt

→ −

g

ℓ
sin f −

A2ω2

2ℓ2
sin f cos f

as T → ∞. So the averaged equation for f is

f̈ +
g

ℓ
sin f +

A2ω2

2ℓ2
sin f cos f = 0 (4)



At f = π, the eigenvalues of equation (4) are

λ = i

√

Aω2

2ℓ2
−

g

ℓ
.

Therefore f = π is stable if

Aω >
√

2gℓ.

Homework: (a) Write equation (4) as a sys-

tem of two first order equations and find all

equilibrium solution.

(b) Compute the eigenvalues of the Jacobi ma-

trix at all equilibrium solutions of equation (4)

to determine their type.

(c) In equation (4) let A = ℓ = 1. Compute the

potential function of equation (4) and use its

graph to depict the phase portrait. Consider

all cases regarding ω as a parameter.


