Notes on Shaking Pendulum

A. Equation of a shaking pendulum: Let
(z,y) be a fixed coordinate frame. The end of
a pendulum moving in the y-direction period-
ically. The movement is with a magnitude A
and a frequency w. Let ¢ be the length of the
pendulum and ¢ be the angle in between the
pendulum and the y-axis. For the pendulum
we have

y = £ COS ¢ + Acoswt, x = £sin ¢.
From which we obtain
y = —£Sin ¢p¢ — Aw sin wt
i = —£cos ()2 — £sin dd — Aw? cos wt
T = £ COS p¢
¥ = —£sind($)2 + £cos ¢o.

Use the second law of mechanics F = ma and
decompose into x and y direction, we obtain

T : .
g — —cosp = —L COS ¢(¢)2 — ¢sin ¢ — Aw? cos wt
m

_Z Sin g = —£sin ¢(¢)2 + £ cos ¢§b

m



where T is the magnitude of the force of ten-
sion on the pendulum. Multiply the first equa-
tion by sin ¢, the second by cos¢. Subtract the
second from the first, we obtain

2
$+(%+A%c05w)sin¢:0 (1)

It is important to remember that we are con-
sidering the case in which

A<l <<w

This is to say, we regard ¢,g as constants of
normal size, comparing to which A is very small
and w is very large.

B. Analysis: We guess that a solution of
equation (1) is roughly the sum of two func-
tions: one is fast shaking with a small magni-
tude, which we denote as ¢(t) and the other



is slowly oscillating, which we denote as f(t).
We write

¢ = f(t) +e(?).
We put it into equation (1) to obtain

2
Fae= _(% + Achcosw) sin(f +¢)

2
~ —(% + A%cosw)(sin f+ecosf)

2
g _. Aw . g
= ——SIn — ——— COswtsIn — &— COSs
SN = wisin f — e}, cos |
Aw?

— € Ccoswt cos f

Let us now try to split this equation into two
as follows: we let

g Aw? .
£ = —TCOSthIn f
f = —%sinf—a%cosf (2)
Aw?
—€ COSwt CoS f




First let us see if we can make sense of the
first equation. Since e(¢t) changes real fast,
and f(¢t) slowly, we can then regard f as a
constant when consider ¢(t). Regarding f as
a constant, we can easily obtain a solution of
the first equation as

A
e(t) = Zsin fcoswt

This function is a fast shake with a small mag-
nitude.

Putting (¢) back into the second equation we
obtain

. A
f= —%sin f— gg—Qcosthin fcos f
42,2 (3)
2 cos2wt sin fcosf

C. Result of averaging: Equation (3) de-
fines a 2D vector field that is time dependent.



To use the analysis of 2D systems we first re-
place the time-dependent vector field with an
averaged vector field. Recall that for a func-
tion P(t), the average is

_ 1 T
P = lim —/ P(t)dt
T—oo0 2T J—T

Taking the average on the right of equation
(3), we obtain

. 1 [T g
= ——— = sin fdt
/ 2T J—-T ¢ /
Lty tsin f cos fdt
_— — —COSW
2T J—T ¢2
1 T A2W2
Cor ) 2
g .
—=Zsin f —
VAL Ay,

as T' — oco. SO the averaged equation for f is

cos?wt sin f cos fdt

A2W2

sin f cos f

A2W2
202

f'—l—%sinf—l— sinfcosf=0 (4)



At f = m, the eigenvalues of equation (4) are

Aw?
=g/ 9
202 ¢

Therefore f = & is stable if

Aw > /2g/.

Homework: (a) Write equation (4) as a sys-
tem of two first order equations and find all
equilibrium solution.

(b) Compute the eigenvalues of the Jacobi ma-
trix at all equilibrium solutions of equation (4)
to determine their type.

(c) In equation (4) let A=/¢=1. Compute the
potential function of equation (4) and use its
graph to depict the phase portrait. Consider
all cases regarding w as a parameter.



