
Dynamical Systems: A Brief

Introduction

1. Objects of Study

Phase Space M : A geometric object (e.g.

sphere, tori, open set in Rn).

A System T : A mapping M → M .

Orbits: x → T (x) → T (T (x)) → · · · .

Ex1: M = R1, T : R1 7→ R1 defined by

T (x) = 1 − 2x2.

x = 0.1, x1 = 0.98, x2 = −0.9208, · · · .

Ex2: M = S1, T (θ) = θ + π.

θ = 1, θ1 = 1 + π, θ2 = 1, · · · .

Ex3: Example: M = R2, T : (x, y) → (x1, y1)

T :

{

x1 = 2x

y1 = 1
2
y



z = (1,1), z1 = (2, 1
2
), z2 = (22, 1

22), · · · .

Ex4: M = R2, T : (r, θ) → (r1, θ1)

T :

{

r1 = r
θ1 = θ + r

z = (1,0), z1 = (1,1), · · · , zn = (1, n mod (2π)), · · · .

– For T : M → M , and x0 ∈ M given, the orbit

started from x0 is denoted as {xn}∞n=0.

– If T−1 exists, we say that T is invertible.

We then are able to talk about backward orbit

from x0: x−1 = T−1x0 and so on.

– Ex1 in the above is not invertible. Ex2, Ex3

and Ex4 are invertible.

2. Fundamental Questions

Q1: Behave of individual orbits.



– Fixed points: T (x) = x.

Ex: T (x) = µx(1 − x)

x = µx(1 − x) → x1 = 0, x2 = 1 − µ−1.

– Periodic orbits: Tn(x) = x.

The smallest n is the period.

Ex: T (x) = 7x(1 − x)

Claim: Periodic orbit of all period exists.

Proof: Let I1 = [0, 1
2
], I2 = [1

2
,1]. ∀n > 0 given, ∃ an

interval I, such that



(i) T i(I) ⊂ I1, i = 0,1, · · · , n − 2;

(ii) T n−1I ⊂ I2, T nI = I1.

Fact: Let T : I → R be continuous such that T (I) ⊂ I
(or T (I) ⊃ I). The T has a fixed point in I.

Note that the period of the orbit constructed is n by

design.

Q2: Organizations of Orbits.

– Phase portrait: (orbit structure)

Example A: T :

{

x1 = 2x

y1 = 1
2
y



Example B: T :

{

r1 = r
θ1 = θ + r

– Local Stability:

Let x0 be a fixed point. An open neighborhood

of x0 is denoted as U(x0), V (x0), etc.

(a) x0 is stable if for every U(x0) given, there

exists an V (x0) such that T iV (x0) ⊂ U(x0) for

all i ≥ 1.

(b) x0 is asymptotically stable (a sink, or an

attracting fixed point) if there exists U(x0),

such that for all x ∈ U(x0), T ix → x0 as i → ∞.



{x ∈ M : T ix → x0} is the attracting basin for

x0.

(c) Let x0 ∈ M be such that Tnx0 = x0, then

x0 is a fixed point of Tn. (a) and (b) apply to

define respectively stable and asymptotically

stable periodic orbits.

Example B is Stable but not asymptotically stable.

Example A is not stable.

No asymptotically stable fixed point for measure pre-
serving maps.

T (x) = 1
2
x has a unique fixed point x0 = 0 that is asymp-

totically stable. Its attracting basin is R.

– Structure stability: Does the orbit structure

of a given T change under small perturbation?

Hyperbolic structure and Elliptic structure





3. Source of Inspirations:

Differential Equation ⇒ Dynamical Systems

dx
dt

= f(x, t) x ∈ Rn.

(a) Autonomous Equations: f(x, t) = f(x)

Solution: x = x(t, x0);

Map: T (x0) = x(1, x0); Tn(x0) = x(n, x0).

Arnold’s cat: U → TU .



(b) Non-auto Equations: f(x, t) = f(x, t + T )

Solution: x(t, x0);

Map: T (x0) = x(T, x0); Tn(x0, T ) = x(nT, x0).

t

(c) Poincáre section.



1D Dynamics: Periodic Orbits

Maps of study: T (x) : R → R.

T (x) is as smooth as we need along the way.

1. Graph of T (x) and orbits

– Fixed points: Intersection of the graph y =

T (x) and y = x.

– A given orbit: Trace the graph.



2. Stability of a fixed point

Claim: Let x0 be a fixed point. x0 is asymp-

totically stable if |T ′(x0)| < 1. It is unstable if

|T ′(x0)| > 1.

Proof: If |T ′(x0)| < 1, then by continuity there exist
I(x0) (an interval contains x0), such that |T ′(x)| < λ < 1
for all x ∈ I(x0). By mean value theorem then,

|T (x) − x0| = |T (x) − T (x0)| < λ|x − x0|

for all x ∈ I(x0). This implies |T n(x)− x0| < λn|x− x0| →
0. The other half is similar.

A demonstration using graph



3. |T ′(x0)| = 1: Degenerate case

Ex: T (x) = x + x3: unstable at x = 0.

Proof: T ′(x) = 1 + 3x2 > 1 around x = 0. So |T (x) −
0| > x for all x 6= 0.

Ex: T (x) = x − x3: asymptotically stable at

x = 0.

Proof: T ′(x) = 1 − 3x2 < 1 around x = 0. So |T (x) −
0| < |x − 0|. Starting from, say, x 6= 0, {xn} is a in
creasing sequence. So xn → x̂. x̂ must be a fixed point.
So x̂ = 0 and xn → 0.

Ex: T (x) = x3 sin 1
x
+x: Stable but not asymp-

totically stable at x = 0.

Proof: Fixed points of this T (x) is defined by

x3 sin
1

x
= 0.

This is a case in which T (x) has infinitely many fixed
points accumulating at x = 0.



4. Existence of periodic orbits

Claim: Let T : R → R. If T has a periodic

orbit of period three, then it has periodic orbit

of all periods.

Proof: Assume a < b < c is such that f(a) = b, f(b) = c
and f(c) = a. Let I0 = [a, b], I1 = [b, c], we have T (I0) ⊃
I1 and f(I1) ⊃ I0 ∪ I1.

Basic observation: For any interval A such that T i(A) ⊃
I1, there are two sub-intervals A0, A1 ⊂ A, such that
T i+1(A0) = I0, T i+1(A1) = I1.

Let n be fix, we will be able to find an sub-interval A in
I1 such that

(a) T i(A) ⊂ I1 for all i < n − 1;

(b) T n−1(A) = I0.

Since T n(A) = T (I0) = I1 ⊃ A. T n has a fixed point,
which is a periodic orbit of T of period n. The period
of this orbit can not be less than n by design.



5. Sarkovskii’s Theorem

Sarkaovskii order

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ 2 · 3 ⊲ 2 · 5 ⊲ · · · ⊲ 22 · 3 ⊲ 22 · 5 ⊲ · · ·

⊲2m · 3 ⊲ 2m · 5 ⊲ · · · ⊲ 2n
⊲ 2n−1

⊲ · · · ⊲ 2 ⊲ 1.

Remark: We can always write an integer n

in the form n = p2m where p ≥ 1 is odd and

m ≥ 0 be positive.

Theorem: Assume that T : R → R is continu-

ous. If T has a periodic orbit of period n, then

for all n′ such that n⊲n′, T has a periodic orbit

of period n′.

– The previous claim (period three implies all period) is
a special case of this claim.

– If a 1D map has only finitely many periodic solutions,
their period has to be multiples of 2.

– This claim is true only for interval maps (not even

true for maps from S1 to S1).



Homework

1. Find T−1 for Ex. 2-4 in the first two pages.

2. Let x0 be a periodic point of period n in [0,1] for
T (x) = 7x(1 − x). Is x0 stable? Why?

3. Let x ∈ Rn, and A = (aij)n×n be a constant matrix.

Find the time-1 map of the equation dx
dt

= Ax.

4. For the given set of differential equations

dx
dt

= x + y − x(x2 + y2)
1

2

dy

dt
= −x + y − y(x2 + y2)

1

2

(a) Find all periodic solutions of this equation.

(b) Let S be the y-axis. Find the Poincare map induced
by this equation around the indicated periodic solutions.

5. Discuss the stability of the fixed points of T (x) =
µx(1 − x) for 2 < µ < 5.

6. Let T (x) = x3 − λx for λ > 0.

(a) Find all periodic points and discuss their stabilities
for 0 < λ < 1.

(b) Prove that, if |x| is sufficiently large, then |fn(x)| →
∞.



7. Suppose A0, A1, · · · , An are closed intervals and

T (Ai) ⊃ Ai+1 for i = 0, · · · , n − 1. Prove that there

is a point x ∈ A0 such that T i(x) ∈ Ai for all i ≤ n.


