Dynamical Systems: A Brief Introduction

1. Objects of Study

Phase Space M : A geometric object (e.g. sphere, tori, open set in R^{n}).

A System T : A mapping $M \rightarrow M$.

Orbits: $x \rightarrow T(x) \rightarrow T(T(x)) \rightarrow \cdots$.
Ex1: $M=R^{1}, T: R^{1} \mapsto R^{1}$ defined by

$$
\begin{aligned}
T(x) & =1-2 x^{2} . \\
x=0.1, x_{1}=0.98, x_{2} & =-0.9208, \cdots .
\end{aligned}
$$

Ex2: $M=S^{1}, T(\theta)=\theta+\pi$.

$$
\theta=1, \theta_{1}=1+\pi, \theta_{2}=1, \cdots .
$$

Ex3: Example: $M=R^{2}, T:(x, y) \rightarrow\left(x_{1}, y_{1}\right)$

$$
T:\left\{\begin{array}{l}
x_{1}=2 x \\
y_{1}=\frac{1}{2} y
\end{array}\right.
$$

$$
z=(1,1), z_{1}=\left(2, \frac{1}{2}\right), z_{2}=\left(2^{2}, \frac{1}{2^{2}}\right), \cdots
$$

Ex4: $M=R^{2}, \quad T:(r, \theta) \rightarrow\left(r_{1}, \theta_{1}\right)$

$$
\begin{gathered}
T:\left\{\begin{array}{llc}
r_{1}= & r \\
\theta_{1}= & \theta+r
\end{array}\right. \\
z=(1,0), z_{1}=(1,1), \cdots, z_{n}=(1, n \bmod (2 \pi)), \cdots
\end{gathered}
$$

- For $T: M \rightarrow M$, and $x_{0} \in M$ given, the orbit started from x_{0} is denoted as $\left\{x_{n}\right\}_{n=0}^{\infty}$.
- If T^{-1} exists, we say that T is invertible. We then are able to talk about backward orbit from x_{0} : $x_{-1}=T^{-1} x_{0}$ and so on.
- Ex1 in the above is not invertible. Ex2, Ex3 and Ex4 are invertible.

2. Fundamental Questions

Q1: Behave of individual orbits.

- Fixed points: $T(x)=x$.

Ex: $\quad T(x)=\mu x(1-x)$

$$
x=\mu x(1-x) \rightarrow x_{1}=0, \quad x_{2}=1-\mu^{-1} .
$$

- Periodic orbits: $T^{n}(x)=x$.

The smallest n is the period.
Ex: $\quad T(x)=7 x(1-x)$

Claim: Periodic orbit of all period exists.
Proof: Let $I_{1}=\left[0, \frac{1}{2}\right], I_{2}=\left[\frac{1}{2}, 1\right] . \forall n>0$ given, \exists an interval I, such that
(i) $T^{i}(I) \subset I_{1}, i=0,1, \cdots, n-2$;
(ii) $T^{n-1} I \subset I_{2}, T^{n} I=I_{1}$.

Fact: Let $T: I \rightarrow R$ be continuous such that $T(I) \subset I$ (or $T(I) \supset I$). The T has a fixed point in I.

Note that the period of the orbit constructed is n by design.

Q2: Organizations of Orbits.

- Phase portrait: (orbit structure)

Example A: $T:\left\{\begin{array}{l}x_{1}=2 x \\ y_{1}=\frac{1}{2} y\end{array}\right.$

Example B : $T:\left\{\begin{array}{llc}r_{1} & = & r \\ \theta_{1} & = & \theta+r\end{array}\right.$

- Local Stability:

Let x_{0} be a fixed point. An open neighborhood of x_{0} is denoted as $U\left(x_{0}\right), V\left(x_{0}\right)$, etc.
(a) x_{0} is stable if for every $U\left(x_{0}\right)$ given, there exists an $V\left(x_{0}\right)$ such that $T^{i} V\left(x_{0}\right) \subset U\left(x_{0}\right)$ for all $i \geq 1$.
(b) x_{0} is asymptotically stable (a sink, or an attracting fixed point) if there exists $U\left(x_{0}\right)$, such that for all $x \in U\left(x_{0}\right), T^{i} x \rightarrow x_{0}$ as $i \rightarrow \infty$.
$\left\{x \in M: T^{i} x \rightarrow x_{0}\right\}$ is the attracting basin for x_{0}.
(c) Let $x_{0} \in M$ be such that $T^{n} x_{0}=x_{0}$, then x_{0} is a fixed point of T^{n}. (a) and (b) apply to define respectively stable and asymptotically stable periodic orbits.

Example B is Stable but not asymptotically stable.
Example A is not stable.
No asymptotically stable fixed point for measure preserving maps.
$T(x)=\frac{1}{2} x$ has a unique fixed point $x_{0}=0$ that is asymptotically stable. Its attracting basin is \mathbb{R}.

- Structure stability: Does the orbit structure of a given T change under small perturbation?

Hyperbolic structure and Elliptic structure

3. Source of Inspirations:

Differential Equation \Rightarrow Dynamical Systems

$$
\frac{d x}{d t}=f(x, t) \quad x \in \mathbb{R}^{n} .
$$

(a) Autonomous Equations: $f(x, t)=f(x)$

Solution: $x=x\left(t, x_{0}\right)$;
Map: $T\left(x_{0}\right)=x\left(1, x_{0}\right) ; \quad T^{n}\left(x_{0}\right)=x\left(n, x_{0}\right)$.
Arnold's cat: $U \rightarrow T U$.

(b) Non-auto Equations: $f(x, t)=f(x, t+T)$

Solution: $x\left(t, x_{0}\right)$;
Map: $T\left(x_{0}\right)=x\left(T, x_{0}\right) ; T^{n}\left(x_{0}, T\right)=x\left(n T, x_{0}\right)$.

(c) Poincáre section.

1D Dynamics: Periodic Orbits

Maps of study: $T(x): \mathbb{R} \rightarrow \mathbb{R}$.
$T(x)$ is as smooth as we need along the way.

1. Graph of $T(x)$ and orbits

- Fixed points: Intersection of the graph $y=$ $T(x)$ and $y=x$.
- A given orbit: Trace the graph.

2. Stability of a fixed point

Claim: Let x_{0} be a fixed point. x_{0} is asymptotically stable if $\left|T^{\prime}\left(x_{0}\right)\right|<1$. It is unstable if $\left|T^{\prime}\left(x_{0}\right)\right|>1$.

Proof: If $\left|T^{\prime}\left(x_{0}\right)\right|<1$, then by continuity there exist $I\left(x_{0}\right)$ (an interval contains x_{0}), such that $\left|T^{\prime}(x)\right|<\lambda<1$ for all $x \in I\left(x_{0}\right)$. By mean value theorem then,

$$
\left|T(x)-x_{0}\right|=\left|T(x)-T\left(x_{0}\right)\right|<\lambda\left|x-x_{0}\right|
$$

for all $x \in I\left(x_{0}\right)$. This implies $\left|T^{n}(x)-x_{0}\right|<\lambda^{n}\left|x-x_{0}\right| \rightarrow$ 0 . The other half is similar.

A demonstration using graph

3. $\left|T^{\prime}\left(x_{0}\right)\right|=1$: Degenerate case

Ex: $\quad T(x)=x+x^{3}$: unstable at $x=0$.
Proof: $T^{\prime}(x)=1+3 x^{2}>1$ around $x=0$. So $\mid T(x)-$ 이 $>x$ for all $x \neq 0$.

Ex: $\quad T(x)=x-x^{3}$: asymptotically stable at $x=0$.

Proof: $\quad T^{\prime}(x)=1-3 x^{2}<1$ around $x=0$. So $\mid T(x)-$ $0\left|<|x-0|\right.$. Starting from, say, $x \neq 0,\left\{x_{n}\right\}$ is a in creasing sequence. So $x_{n} \rightarrow \hat{x}$. \hat{x} must be a fixed point. So $\hat{x}=0$ and $x_{n} \rightarrow 0$.

Ex: $T(x)=x^{3} \sin \frac{1}{x}+x$: Stable but not asymptotically stable at $x=0$.

Proof: Fixed points of this $T(x)$ is defined by

$$
x^{3} \sin \frac{1}{x}=0 .
$$

This is a case in which $T(x)$ has infinitely many fixed points accumulating at $x=0$.

4. Existence of periodic orbits

Claim: Let $T: \mathbb{R} \rightarrow \mathbb{R}$. If T has a periodic orbit of period three, then it has periodic orbit of all periods.

Proof: Assume $a<b<c$ is such that $f(a)=b, f(b)=c$ and $f(c)=a$. Let $I_{0}=[a, b], I_{1}=[b, c]$, we have $T\left(I_{0}\right) \supset$ I_{1} and $f\left(I_{1}\right) \supset I_{0} \cup I_{1}$.

Basic observation: For any interval A such that $T^{i}(A) \supset$ I_{1}, there are two sub-intervals $A^{0}, A^{1} \subset A$, such that $T^{i+1}\left(A^{0}\right)=I_{0}, T^{i+1}\left(A^{1}\right)=I_{1}$.

Let n be fix, we will be able to find an sub-interval A in I_{1} such that
(a) $T^{i}(A) \subset I_{1}$ for all $i<n-1$;
(b) $T^{n-1}(A)=I_{0}$.

Since $T^{n}(A)=T\left(I_{0}\right)=I_{1} \supset A . T^{n}$ has a fixed point, which is a periodic orbit of T of period n. The period of this orbit can not be less than n by design.

5. Sarkovskii's Theorem

Sarkaovskii order

$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright \cdots \triangleright 2^{2} \cdot 3 \triangleright 2^{2} \cdot 5 \triangleright \cdots$
$\triangleright 2^{m} \cdot 3 \triangleright 2^{m} \cdot 5 \triangleright \cdots \triangleright 2^{n} \triangleright 2^{n-1} \triangleright \cdots \triangleright 2 \triangleright 1$.

Remark: We can always write an integer n in the form $n=p 2^{m}$ where $p \geq 1$ is odd and $m \geq 0$ be positive.

Theorem: Assume that $T: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. If T has a periodic orbit of period n, then for all n^{\prime} such that $n \triangleright n^{\prime}, T$ has a periodic orbit of period n^{\prime}.

- The previous claim (period three implies all period) is a special case of this claim.
- If a 1D map has only finitely many periodic solutions, their period has to be multiples of 2 .
- This claim is true only for interval maps (not even true for maps from S^{1} to S^{1}).

Homework

1. Find T^{-1} for Ex. 2-4 in the first two pages.
2. Let x_{0} be a periodic point of period n in $[0,1]$ for $T(x)=7 x(1-x)$. Is x_{0} stable? Why?
3. Let $x \in \mathbb{R}^{n}$, and $A=\left(a_{i j}\right)_{n \times n}$ be a constant matrix. Find the time-1 map of the equation $\frac{d x}{d t}=A x$.
4. For the given set of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=x+y-x\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \\
& \frac{d y}{d t}=-x+y-y\left(x^{2}+y^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

(a) Find all periodic solutions of this equation.
(b) Let S be the y-axis. Find the Poincare map induced by this equation around the indicated periodic solutions.
5. Discuss the stability of the fixed points of $T(x)=$ $\mu x(1-x)$ for $2<\mu<5$.
6. Let $T(x)=x^{3}-\lambda x$ for $\lambda>0$.
(a) Find all periodic points and discuss their stabilities for $0<\lambda<1$.
(b) Prove that, if $|x|$ is sufficiently Iarge, then $\left|f^{n}(x)\right| \rightarrow$ ∞.
7. Suppose $A_{0}, A_{1}, \cdots, A_{n}$ are closed intervals and $T\left(A_{i}\right) \supset A_{i+1}$ for $i=0, \cdots, n-1$. Prove that there is a point $x \in A_{0}$ such that $T^{i}(x) \in A_{i}$ for all $i \leq n$.

