
Floquet Theory 
  
    Consider the linear periodic system as follows.  

xtAx )(= , ( ) ( )A t p A t+ = , 0p > , 

where )(tA )(RC∈ .  

Lemma 8.4 If C  is a n n×  matrix with 0det ≠C , then, there exists a n n×  

(complex) matrix B  such that CeB = .  

Proof: For any matrix C , there exists an invertible matrix P , s.t. 1P CP J− = , 

where J  is a Jordan matrix.  

If CeB = , then, 
1 1 1P B P Be P e P P CP J
− − −= = = . Therefore, it is suffice to prove 

the result when C  is in a canonical form.    

    Suppose that 1( , , )sC diag C C=  , j j j jC I Nλ= + , where jN  is nilpotent, 

that is,  
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Since C  is invertible for each 0jλ ≠ .  

If we can show that for each jC , there exists jB  s.t. jB
jC e=  ⇒  BC e= . 
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Since jn
jN O= , we actually have 
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Let 1( , , )sB diag B B=  , where jB  is defined above. We have the desired result 

given by  
1 2

1 2( , , , ) ( , , , )sB B BB
se diag e e e diag C C C C= = =  .  □ 

 

Remark 8.16 Clearly, B  is not unique since 2 2 2n nB k i I k i IB B k i
ne e e e e Iπ π π+ = =  

2B k i Be e eπ= =  for any integer k .  

 

Theorem 8.6 (Floquet Theorem) If )(tΦ  is a fundamental matrix solution of the 

periodic system xtAx )(= , then so is ( )t pΦ + . Moreover, there exists an invertible 

matrix )(tP  with p - period such that  

( ) ( ) B tt P t eΦ = . 

Proof. Let ( ) ( )t t pΨ = Φ + . Since )()()( ttAt Φ=Φ′ , it follows that 

( ) ( ) ( ) ( ) ( ) ( )t t p A t p t p A t t′ ′Ψ = Φ + = + Φ + = Ψ , 

Hence, )(tΨ  is also a matrix solution. Since )(tΦ  is invertible for all Rt∈ , so is 

( )t pΦ +  ⇒  )(tΨ  is also a fundamental matrix solution. Therefore, there exists an 

invertible matrix C  (for example, if )(tΦ  satisfies (0) nIΦ = , then ( )C p= Φ !! 

Depends on solutions. It is a point of difficulty for computation) s.t.  

( ) ( )t p t CΦ + = Φ  for all Rt∈ . 

By Lemma 8.4, there exists a matrix B  such that B pe C= . For such a matrix 

B , we take ( ) : ( ) BtP t t e −= Φ , that is, ( ) ( ) B tt P t eΦ = . Then  

( ) ( )( ) ( ) ( ) ( ) ( )B t p B t p BtP t p t p e t Ce t e P t− + − + −+ = Φ + = Φ = Φ = .   

Therefore )(tP  is invertible for all Rt∈  and p -periodic. This concludes the proof. 



□  
 
Remark 8.17  

1) If we know )(tΦ  over 0 0[ , ]t t p+ , then we will know )(tΦ  for all Rt∈  by 

Floquet Theorem. This means that )(tΦ  on 0 0[ , ]t t p+  determines )(tΦ  for all 

t R∈ .  
Reasoning:  

Suppose )(tΦ  is known on 0 0[ , ]t t p+ . Since ( ) ( )t p t CΦ + = Φ , we take 

1
0 0( ) ( )C t t p−= Φ Φ +  and 1 lnB p C−= . ( ) ( ) BtP t t e −= Φ  is known on 0 0[ , ]t t p+ . 

Since )(tP  is periodic for Rt∈ , )(tΦ  is given over Rt∈  by ( ) ( ) B tt P t eΦ = .   

2) If )(tΦ  determines B te  (or B ), then any fundamental matrix solution ( )tΨ  

determines a similar matrix 1B pSe S −  (or 1S BS − ).  

Reasoning:  

For any fundamental matrix solution ( )tΨ , there exists S  with 0det ≠S  s.t. 

( ) ( )t t SΦ = Ψ . Since ( ) ( ) B pt p t eΦ + = Φ , we have 

( ) ( ) B pt p S t S eΨ + = Ψ  ⇒  
11( ) ( ) ( )B p S B S pt p t S e S t e
−−Ψ + = Ψ = Ψ . 

3) For the linear periodic system, its solutions are not necessarily periodic. That is, 

( ) ( )t t pΦ ≠ Φ +  in general!!! Give counter-example by yourselves.  

 

Corollary 8.1 Under the transformation ( )x P t y= , which is invertible and periodic, 

the periodic system xtAx )(=  ⇒  a time-invariant system .  

Proof. Suppose )(tP  and B  defined by before and let ytPx )(= . Then 

( ) ( )x P t y P t y′ ′ ′= +  and ( ) ( ) ( )x A t x A t P t y′ = =  ⇒  ( ) ( ) ( ) ( )P t y P t y A t P t y′ ′+ = , 

⇒  1( )[ ( ) ( ) ( )]y P t A t P t P t y−′ ′= − . 

By Floquet Theorem with ( ) ( ) BtP t t e −= Φ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Bt BtP t A t t e t e B A t P t P t B− −′ = Φ +Φ − = − . 



It follows that 
1 1( )[ ( ) ( ) ( )] ( ) ( )y P t A t P t P t y P t P t B y B y− −′ ′= − = = . 

This completes the proof. □ 
 
Remark 8.18  

1) ytPx )(=  is called Lyapunov transformation. )(tP , which plays an important 

role. But it is difficult to be found explicitly since the computation of 

( ) ( ) B tP t t e −= Φ  depends on a fundamental matrix solution ( )tΦ . 

2) Since ( ) ( )t p t CΦ + = Φ  with 0det ≠C , Be C= , the eigenvalues ρ  of C  are 

called the characteristic multipliers of the periodic linear system. The eigenvalues 
λ  of B  are called characteristic exponents of the periodic linear system. 

pe λρ = .  

3) Since B  is not unique, the characteristic exponents are not uniquely defined, but 

the multipliers { ρ } are. uniquely defined (Why?) We always choose the exponents 

{ }λ  as the eigenvalues of B , where B  is any matrix such that B pe C= . 

4) Since B  is not unique and satisfies B pe C= , so B  is not necessarily real.  

5) B  may be complex, even if C  is real. However, if )(tA  is real (so that C  is 

real), then, there exists a real S  such that 2 2S pe C= .   

Reasoning:   

Suppose )(tΦ  with (0) nIΦ = , then ( ) B pC p e= Φ = , so  

2 ( )( ) B p B p B B pp e e e +Φ = = . 

Let 
2

BBS +
= , then S  is real s.t. 2 2 2( )S pe p C= Φ = .  

6) Let ( ) ( ) S tS t t e −= Φ . Then )(tS  is real, 2 p -periodic.  

Moreover, ( )x S t z=  reduces the periodic system xtAx )(=  into z S z′ = . 

Reasoning:  

Clearly, )(tS  is real since S  is real, and  

( 2 ) 2 2( 2 ) ( 2 ) ( ) ( ) ( )S t p S p S t S tS t p t p e t C e e t e S t− + − − −+ = Φ + = Φ = Φ = ; 



It is similar to obtain zSz =  under the transformation ztSx )(= . 

 
•  Floquet theory gives a theoretical result which reduces it into linear systems with 

constant coefficients. However, The Lyapunov transformation can not be 
computed.  

 
•  Floquet theory is very useful to study stability of a given periodic solution, noted 
that not equilibrium here. This is a topic of research for dynamic systems, or it is also 
named as geometric theory of differential equations. It is noted that this type of 
stability is not in Lyapunov sense.   


