Floquet Theory

Consider the linear periodic system as follows.

$$
\dot{x}=A(t) x, \quad A(t+p)=A(t), \quad p>0,
$$

where $A(t) \in C(R)$.
Lemma 8.4 If C is a $n \times n$ matrix with $\operatorname{det} C \neq 0$, then, there exists a $n \times n$ (complex) matrix B such that $e^{B}=C$.

Proof: For any matrix C, there exists an invertible matrix P, s.t. $P^{-1} C P=J$, where J is a Jordan matrix.

If $e^{B}=C$, then, $e^{P^{-1} B P}=P^{-1} e^{B} P=P^{-1} C P=J$. Therefore, it is suffice to prove the result when C is in a canonical form.

Suppose that $C=\operatorname{diag}\left(C_{1}, \cdots, C_{s}\right), C_{j}=\lambda_{j} I_{j}+N_{j}$, where N_{j} is nilpotent, that is,

$$
N_{j}=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & 0
\end{array}\right) \text { with } N_{j}^{n_{j}}=O
$$

Since C is invertible for each $\lambda_{j} \neq 0$.
If we can show that for each C_{j}, there exists B_{j} s.t. $C_{j}=e^{B_{j}} \Rightarrow C=e^{B}$. Since $C_{j}=\lambda_{j}\left(I_{j}+\frac{N_{j}}{\lambda_{j}}\right)$, using the expansion of $\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}, \quad|x|<1$, we have

$$
\begin{aligned}
B_{j} & =\ln C_{j}=\ln \left\{\lambda_{j}\left(I_{j}+\frac{N_{j}}{\lambda_{j}}\right)\right\}=I_{j} \ln \lambda_{j}+\ln \left(I_{j}+\frac{N_{j}}{\lambda_{j}}\right) \\
& =I_{j} \ln \lambda_{j}+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}\left(\frac{N^{k}}{\lambda^{k}}\right) .
\end{aligned}
$$

Since $N_{j}^{n_{j}}=O$, we actually have

$$
B_{j}=\ln C_{j}=I_{j} \ln \lambda_{j}+\sum_{k=1}^{n_{j}-1} \frac{(-1)^{k-1}}{k}\left(\frac{N^{k}}{\lambda^{k}}\right)=I_{j} \ln \lambda_{j}+M_{j}, \quad j=1,2, \cdots, s,
$$

where $M_{j}=\sum_{k=1}^{n_{j}-1} \frac{(-1)^{k-1}}{k}\left(\frac{N^{k}}{\lambda^{k}}\right)$. Therefore, we have

$$
e^{B_{j}}=\exp \left\{I_{j} \ln \lambda_{j}+M_{j}\right\}=\exp \left\{\ln C_{j}\right\}=C_{j}, \quad j=1,2, \cdots, s .
$$

Let $B=\operatorname{diag}\left(B_{1}, \cdots, B_{s}\right)$, where B_{j} is defined above. We have the desired result given by

$$
e^{B}=\operatorname{diag}\left(e^{B_{1}}, e^{B_{2}}, \cdots, e^{B_{s}}\right)=\operatorname{diag}\left(C_{1}, C_{2}, \cdots, C_{s}\right)=C .
$$

Remark 8.16 Clearly, B is not unique since $e^{B+2 \pi k i I_{n}}=e^{B} e^{2 \pi k i I_{n}}=e^{B} e^{2 \pi k i} I_{n}$ $=e^{B} e^{2 \pi k i}=e^{B}$ for any integer k.

Theorem 8.6 (Floquet Theorem) If $\Phi(t)$ is a fundamental matrix solution of the periodic system $\dot{x}=A(t) x$, then so is $\Phi(t+p)$. Moreover, there exists an invertible matrix $P(t)$ with p-period such that

$$
\Phi(t)=P(t) e^{B t} .
$$

Proof. Let $\Psi(t)=\Phi(t+p)$. Since $\Phi^{\prime}(t)=A(t) \Phi(t)$, it follows that

$$
\Psi^{\prime}(t)=\Phi^{\prime}(t+p)=A(t+p) \Phi(t+p)=A(t) \Psi(t),
$$

Hence, $\Psi(t)$ is also a matrix solution. Since $\Phi(t)$ is invertible for all $t \in R$, so is $\Phi(t+p) \Rightarrow \Psi(t)$ is also a fundamental matrix solution. Therefore, there exists an invertible matrix C (for example, if $\Phi(t)$ satisfies $\Phi(0)=I_{n}$, then $C=\Phi(p)$!! Depends on solutions. It is a point of difficulty for computation) s.t.

$$
\Phi(t+p)=\Phi(t) C \quad \text { for all } t \in R
$$

By Lemma 8.4, there exists a matrix B such that $e^{B p}=C$. For such a matrix B, we take $P(t):=\Phi(t) e^{-B t}$, that is, $\Phi(t)=P(t) e^{B t}$. Then

$$
P(t+p)=\Phi(t+p) e^{-B(t+p)}=\Phi(t) C e^{-B(t+p)}=\Phi(t) e^{-B t}=P(t) .
$$

Therefore $P(t)$ is invertible for all $t \in R$ and p-periodic. This concludes the proof.

Remark 8.17

1) If we know $\Phi(t)$ over $\left[t_{0}, t_{0}+p\right]$, then we will know $\Phi(t)$ for all $t \in R$ by Floquet Theorem. This means that $\Phi(t)$ on $\left[t_{0}, t_{0}+p\right]$ determines $\Phi(t)$ for all $t \in R$.

Reasoning:

Suppose $\Phi(t)$ is known on $\left[t_{0}, t_{0}+p\right]$. Since $\Phi(t+p)=\Phi(t) C$, we take $C=\Phi^{-1}\left(t_{0}\right) \Phi\left(t_{0}+p\right)$ and $B=p^{-1} \ln C . P(t)=\Phi(t) e^{-B t}$ is known on $\left[t_{0}, t_{0}+p\right]$. Since $P(t)$ is periodic for $t \in R, \Phi(t)$ is given over $t \in R$ by $\Phi(t)=P(t) e^{B t}$.
2) If $\Phi(t)$ determines $e^{B t}$ (or B), then any fundamental matrix solution $\Psi(t)$ determines a similar matrix $S e^{B p} S^{-1}$ (or $S B S^{-1}$).

Reasoning:

For any fundamental matrix solution $\Psi(t)$, there exists S with $\operatorname{det} S \neq 0$ s.t. $\Phi(t)=\Psi(t) S$. Since $\Phi(t+p)=\Phi(t) e^{B p}$, we have

$$
\Psi(t+p) S=\Psi(t) S e^{B p} \Rightarrow \Psi(t+p)=\Psi(t) S e^{B p} S^{-1}=\Psi(t) e^{S B S^{-1} p} .
$$

3) For the linear periodic system, its solutions are not necessarily periodic. That is, $\Phi(t) \neq \Phi(t+p)$ in general!!! Give counter-example by yourselves.

Corollary 8.1 Under the transformation $x=P(t) y$, which is invertible and periodic, the periodic system $\dot{x}=A(t) x \Rightarrow$ a time-invariant system .

Proof. Suppose $P(t)$ and B defined by before and let $x=P(t) y$. Then

$$
\begin{gathered}
x^{\prime}=P^{\prime}(t) y+P(t) y^{\prime} \text { and } x^{\prime}=A(t) x=A(t) P(t) y \Rightarrow P^{\prime}(t) y+P(t) y^{\prime}=A(t) P(t) y, \\
\Rightarrow y^{\prime}=P^{-1}(t)\left[A(t) P(t)-P^{\prime}(t)\right] y .
\end{gathered}
$$

By Floquet Theorem with $P(t)=\Phi(t) e^{-B t}$, we have

$$
P^{\prime}(t)=A(t) \Phi(t) e^{-B t}+\Phi(t) e^{-B t}(-B)=A(t) P(t)-P(t) B .
$$

It follows that

$$
y^{\prime}=P^{-1}(t)\left[A(t) P(t)-P^{\prime}(t)\right] y=P^{-1}(t) P(t) B y=B y .
$$

This completes the proof.

Remark 8.18

1) $x=P(t) y$ is called Lyapunov transformation. $P(t)$, which plays an important role. But it is difficult to be found explicitly since the computation of $P(t)=\Phi(t) e^{-B t}$ depends on a fundamental matrix solution $\Phi(t)$.
2) Since $\Phi(t+p)=\Phi(t) C$ with $\operatorname{det} C \neq 0, e^{B}=C$, the eigenvalues ρ of C are called the characteristic multipliers of the periodic linear system. The eigenvalues λ of B are called characteristic exponents of the periodic linear system. $\rho=e^{\lambda p}$.
3) Since B is not unique, the characteristic exponents are not uniquely defined, but the multipliers $\{\rho\}$ are. uniquely defined (Why?) We always choose the exponents $\{\lambda\}$ as the eigenvalues of B, where B is any matrix such that $e^{B p}=C$.
4) Since B is not unique and satisfies $e^{B p}=C$, so B is not necessarily real.
5) B may be complex, even if C is real. However, if $A(t)$ is real (so that C is real), then, there exists a real S such that $e^{2 S p}=C^{2}$.

Reasoning:

Suppose $\Phi(t)$ with $\Phi(0)=I_{n}$, then $C=\Phi(p)=e^{B p}$, so

$$
\Phi^{2}(p)=e^{B p} e^{\bar{B} p}=e^{(B+\bar{B}) p} .
$$

Let $S=\frac{B+\bar{B}}{2}$, then S is real s.t. $e^{2 S p}=\Phi^{2}(p)=C^{2}$.
6) Let $S(t)=\Phi(t) e^{-S t}$. Then $S(t)$ is real, $2 p$-periodic.

Moreover, $x=S(t) z$ reduces the periodic system $\dot{x}=A(t) x$ into $z^{\prime}=S z$.

Reasoning:

Clearly, $S(t)$ is real since S is real, and

$$
S(t+2 p)=\Phi(t+2 p) e^{-S(t+2 p)}=\Phi(t) C^{2} e^{-2 S p} e^{-S t}=\Phi(t) e^{-S t}=S(t) ;
$$

It is similar to obtain $\dot{z}=S z$ under the transformation $x=S(t) z$.

- Floquet theory gives a theoretical result which reduces it into linear systems with constant coefficients. However, The Lyapunov transformation can not be computed.
- Floquet theory is very useful to study stability of a given periodic solution, noted that not equilibrium here. This is a topic of research for dynamic systems, or it is also named as geometric theory of differential equations. It is noted that this type of stability is not in Lyapunov sense.

