Hyperbolic Theory: Stable and
Unstable Manifolds

Let T : R?2 — R2 be a C™ mapping such that

T Az + oz, y)
y1 = py+ B(x,y).

We assume that

(i) O< <1< and
(1) @(0,0) = £(0,0) =0 and [lallc1,IBllc1 < e-

Theorem 1 Under the assumption that e > 0
is sufficiently small, there exists ¢ : R — R such
that (z,¢(x)) is a unique Lipschitz graph that
is T-invariant.

— By a Lipschitz graph we mean that there
exists v > 0 such that, for all z,z’ € R,

6(x) ~ ()| _

|z — |




— By T-invariant we mean that, for every x € R
there exists =/ € R such that

T(z,¢(z)) = (', 9(2)).

— Let WY = {(z,¢(x)),x € R}. We call W as
the unstable manifold for T.

Theorem 2 Let (z,¢(x)) be as in the above.
Then

(i) ¢(z) is C1L.
(ii) Let u be a tangent vector of W% at z € WY,
then
IDTZull > K(A)"||ull
where X > 1 is smaller than .

Theorem 2 claims in particular that W% is more
than Lipschitz. It is C1.

Theorem 3 Assume that «, 8 have bounded
C"-norms. Then (x,¢(x)) in the above is a
C"-graph.



1. Proof of Theorem 1

Let
|z — y
To make £~ a norm-space we let
XT
zeR |5B|

For ¢1,¢2 € L, let
[p1(z) — po(2)|

|z

d(¢1,¢2) = ||¢1 — ¢2| = sup
rER

(L~,d) is a complete metric space.
Step 1: First we prove that, for € sufficiently

small, the image of a Lipschitz graph in Ly
under T' is also a Lipschitz graph in L.

Let ¢ € £,.



Claim 1.1: Vz € R, there exists a unique g
such that

r = Ag + a(g, $(g)),

which we denote as g4(x)

Remark: Observe that

T(z,¢(x)) = (Av+a(z, ¢(x)), po(z)+6(z, ¢(z))

Claim 1.1 implies that the {T(z,¢(xz));x € R}
iIs a graph of a function, which we denote as

Tiob.

Note that Tx¢(z) is defined by

z — g — pod(g) + B(g,¢(9))
where g = gy(x) is as in Claim 1.1.

Proof: For x given, let F : R — R be defined as

F(g) =2tz — 2" alg, ¢(9))
It suffices to show that F(g) is a contraction:



< A 'e(Jg1 — 92| + |#(g1) — ¢(g2)|)
< AT+ 9)elgr — g2
< plrr — 22

| F(91) — F(g2)]

for some p < 1. For the first inequality, we use ||al|c: < €.
For the second, we use ¢ € £, and the last is obtained
by letting € small.

Claim 1.2: T.¢ € Ly provided that ¢ is suffi-
ciently small.

Proof: Let T'(z1, ¢(x1)) = (Z1,71), T (22, ¢(x2)) = (Z2,72).
We need to prove that

171 — Y2

= — <
|Z1 — 22

This follows from

|Z1 — Z2| > Az1— 22| — o=, ¢(21)) — a(z2, ¢p(z2))]
> (A—e(1+4+7))|z1 — 2

91 — 72| < plé(zr) — d(x2)| + |B(z1, p(21)) — B(x2, p(22))]
< (e 4+ D)ylz — 2.

These two inequalities are combine to confirm Claim 2.

Step 2: We show that ¢ — Tk¢ is a contrac-
tion.



By the way || - || is defined on Ly, we need to
estimate

Tig1(2) — Tugo(a)

||

Note that Tx¢(x) are defined indirectly by

T — g = gy(z) — pd(g) + B(g,¢(9))
So need to first estimate |gy, (z) — g4, ()]

Estimate |gy,(z) — g4,(2)|:

o Let g1 = gy4,(x), g2 = gg,(x). From

= Ag1+ a(g1, ¢1(91))
= Ag2+ a(gz2, $2(g2))

X
X
we obtain

A(g1 — g2) + a(g1, $1(g91)) — a(g2, ¢2(g2)) = 0.
It follows that

A(g1 — g2) + 0za(g1 — g2) + Fya(d1(g1) — $2(g2)) = 0.
We write

¢1(91) — $2(92) = (¢1(91) — ¢#1(92)) + (¢1(g92) — ¢2(g2))

in the above to conclude

¢1(g1) — ¢1(g2)
g1 — g2

)(91—g2) = —0ya(p1(g2)—¢2(g2)).

(A-0za+0ya



It follows that

91 |g2|||p1 — ¢2||

S
— ga| <
! “A—e(1+9)

e \We also have

Tegp1(z) — T*p2(z)|

\u(p1(g1) — ¢2(g2)) + B(g1, 91(g1)) — B(g2, $2(g2))|
(4 0yB8) (p1(91) — P2(g2)) + 0:8(91 — g2)|

(1 +e)|p1(g91) — 1(g2)| + (1 + &)[P1(g92) — $2(g2)|
+026(g1 — g2)|

< ((+e)y+e)lgr — g2l + (u+e)||op1 — #2||g2]

< (p+ K(e)lgalll¢r — ¢2]|-

Note that in obtaining the last inequality we used our
previous estimate on |g1 — go|.

A

To finish this proof we also need
= Ag2 + B(g2, 92(g2))
> (A—e(@4+v))lg2l-

Combining the last two we finally conclude
that

||

u+ Ke
1721 — o2l < S— —ll¢2 — 1.

So Ty : Ly — L~ is a contraction. Theorem 1
IS proved.




2. Proof of Theorem 2
Step 1 Preparatory remarks

First note that a Lipschitz function is not nec-
essarily differentiable.

Ex: f(z) =zsiniis a Lipschitz function on R but it is
not differentiable at x = O:

1 1 1
f'(x) =sin= — ~cos—
i xr xr

is not well-defined at z = 0.

Definition: (a) Let ¢ : R — R be Lipschitz,
and let z be fixed. We say that a unit vector
r € R? is a tangent direction of ¢ at (z, #(x))
if there exists z,, — x such that

o (e g(@n) = (2,6(2) _

=0 |(zn, p(zn)) — (2, ¢(z))|
(b) Let Thy ‘= {kt; k € R; 7 is a tangent
direction of ¢ at (z,#(x))}. 74, IS the collection
of all tangent vectors of ¢ at (z,¢(x)).




Claim 2.1: ¢(«x) is differentiable if and only
if Ty IS @ one dimensional subspace of R2.

Proof: If ¢(z) is differentiable, then

¢(xn) = ¢(x) + ¢'(x)(zn — =) + o(|zs — x|).
It follows that
(zn, p(zn)) — (z, ¢(z)) IR (1,¢'(x))
(2, d(2n)) — (z,0(x))| (1,9 (2))]

So we have only one tangent direction and 74, is a one
dimensional subspace.

If 74, is @ 1-d subspace, then there exists a real number
L such that (u,v) € 7, if and only if v = Lu. To prove
that ¢ is differentiable at x, it suffices to prove that, for
any x, — x,

i 19(@n) — @) — L(za —2)|
n— o0 |37n — ;r;|
To prove this we note that by assumption,
(T — x, p(Tr) — ()
|(zn — x, ¢(zn) — P(x))|

which is written componentwise as

— (u, Lu),

wn_x

(@n — 2, (@) — b))

and
b(n) — $(=)
Gon =, 6(an) — 6@ -




It follows that
¢(zn) — d(xz) — Lul(zn —z,d(xn) — ¢(x))|

— L(xzp, — x)

Claim 2.2: Let ¢ € £y be the T-invariant
graph in Theorem 1. Then Tbs is T-invariant,
i.e. V1 €T¢x’

DT(2.6(x)T € Tor(a.62))"

Proof: This claim follows from
T(zn, p(zn)) — T(x, Pp(x)) DT 6(z)T
_>
T (2n, p(zn)) — T(z, ()|  [DT(zpe))7]
provided that

(@n, ¢(an)) — (2, 9(2)) |,

In summary, to prove that ¢ in Theorem 1
is differentiable, it suffices to prove that asso-
ciated with each (z,¢(x)), there exists a 1D-
subspace E, such that



(a) (u,v) € 7, if and only if (u,v) € Eg;
(b) E; is DT-invariant.

Furthermore, if

(c) E is continuous with respect to z,

then ¢ is C1, and Theorem 2(i) is proved.

Step 2: Proof of (a)-(c): an invariant cone
argument

— Let TpIR{2 be the space of tangent vectors of
R? at p € R%. Then TpR? ~ R?.

Definition For 0 < v < 1 and p € R2. We call

Hpy = {(u,v) € TyR? :  |v] < ~|u|}



the horizontal cone of size v at p € R?2. Simi-
larly,

Vp = {(u,v) € TpR? :  |u| < ~|v|}

is the vertical cone of size ~.

In what follows we first chose v > 0 small then
e > 0 smaller.

Claim 2.3: {Hp, p € R? is invariant under DT,
i.e.,

Similarly, {V, : p € R?} is invariant under
DT 1, e,

—1
DTp Vp C VT—lp
Claim 2.4: Vectors in Hp are uniformly ex-

panding under the iterations of DT there ex-
ists XA > 1, such that for 7 € Hp,

| DTpr| > Al



Similarly, vectors in V,, are uniformly expand-
ing under the iterations of DT—1: We have
for 7 € Vp,

|DTp—1T| > A7

Proof: Note that
DT:(A—I—&U& Oy )

8$/8 % + ayﬁ
For 7 := (u,v) € Hp, let s(1) = % Then
|0z8u + pv + 0yBv|
s(PT(7)) | A\u + Orau + Oyav|

ps(t) —e(1 4 (7))

<
= A4+ e(1+s(0)
< 7.




proving Claim 2.3. For the claim on uniform expanding
we have

|IDT(T)]? = (88u~+ pv + 8,8v)? + (A\u + dz0u + d,av)?
> w?(W + p?s*(1) — O(e))
2 _
> X9
14 +2

Note that in obtaining the last inequality we used

I7|? = u? +v? = (1 + s°(7))u? < (1 +~%)u?
since T € Hp. It follow that

A— O(e)
|DT(7)| > ﬁw

We are now ready to construct the 1D invari-
ant spaces on W% = {(z, ¢(x)}.

Claim 2.5: For pe W4, let

Then {E,,p € W%} is a collection of DT-invariant
1D subspaces. Furthermore, {Ep} is continu-
ous in p.



Proof: Note thatin the above p_, =T "p. Let Ey(n) :=
DT} Hp_,. It follows from Observation 1 that E,(n+1) C

E,(n). So E, is non-empty, therefore at least a 1D-
subspace of R2.

e We show that E, is DT-invariant: this is because
Erpy(n+1) = DT o E,(n), and it follows that

Er(y = NErpy(n+ 1) = DT(NEy(n)) = DTE,.

e \WWe now prove that E, is not more than a 1D subspace:
Our proof goes as follows.

(1) It follows from Claim 2.4 that, for 7 € E,,
| DT, 7| < (A)7"|7].

Reason: Let 7/ = DT, ", then we have
DT} 7' > (X)"|7].
This is
|DT, 7| < (A)"|7].



(2) Similarly, let
Sp = M1 DT, " (Vp,).
is DT-invariant, and for any 7 € S,,
DT "t > (A)"|7|.

(3) Let e1 be a unit vector in E,, and ez be a unit vector
in Sp,. Assume that 7 € E, is not in the subspace span
by e1. Then there exists K1, Ko = 0 such that
= Kie1 + Koeos.
Applying DT~™, we have
DT "t = K1DT "e1 + KoDT  "e>.

This can not hold for all n > 0 since as n — oo, |DT"7|
and |DT~"e;1| decreasing exponentially towards zero but
|DT"ez| — oo exponentially.

e Finally we show that E, is continuous on p:
(a) First we note that E, is the only set of vectors in
H, such that

DT, "] < (A) "7

This is because any other vector in H, can be written
as Kie1 + Koepz with Ko = 0. But the images of ex> grow
exponentially under DT1.

(b) For p, — p, let , be the unit tangent vector in E,,
and {m,} is any given subsequence such that 7,, — 7. It
suffices to argue that r € E,, which implies E, — E,.



T € E, because for any m > 0O fixed we have
| DT}, " Tn,| < (A) ™™ |7, |-
Let £k — oo we obtain, for all m > 0 that
DT, ™7| < A)~™|7|.
Therefore T spans E, by (a).

Remarks: (1) Theorem 2 follows from combining this
claim and the conclusions of Step 1.

(2) Applying the same argument to 7!, we obtain a
stable manifold W* := {(¥(y),y)} where ¥(y) is C*.



3. Proof of Theorem 3

Step 1 Formal computation of derivatives

Let T-1: (z,y) » (x_1,y_1) be written as
z1=X'z+4+ f(z,y), ya1=up'y+gzy).

We have ||f||cr |lgllcr < Ke. We now regard
x_1,y_1 as functions of x for y = ¢(x). In what

follows f = f(z,¢d(x)),9 = g(x,d(x)). We have

(z_1) A+ fo 4 fyd (2)
(v_1) = pw ¢/ (z) + gz + gyd' ().

Since (z, ¢(z)) is T~ l-invariant,

y_1= ¢(x_1).
Differentiate on both sides, we obtain
(N_l + gy)Qb/(x) + g: = le(x—l)()\_l + fz + fy¢/($))

We now compute higher derivatives. Let ¢{")(z)

be the n-th derivative of ¢(x) at z. From the
last equality we have

gyt (1) f,) 8 (x) = ¢ (1) A1+ fot-fy 8 (2))+P



where P is a polynomial of the partial deriva-
tives of f, g and ¢ of order < n. It then follows
that

A+ fo + £y (@)

(p=t 4 gy + ¢'(z-1) fy)
P

(Wt +gy+&(x-1)fy)

We now use this equality inductively, i.e. we
first let x be z_1 and x_1 be x_o respectively

in the above to obtain

™ (z_1) A+ fo+ fyd (2)

(b=t + gy + ¢'(z—2) fy)
P

(w4 gy + ¢'(z-2)fy)

Note that here we evaluate fz, fy and P at
(z_1,6(x_1)). We then substitute ¢(™(z_1)
in the right hand of the previous equality buy
the right hand of the last equality. We write
& (z) in terms of ¢(™W(xz_5) and all other
derivatives of f, g and ¢(x) of order <n—1 at
x, r_1 and xz_» (We could write this formula
explicitly if so desired).

oM (z) = o™ (z-1)

_|_

™ (z_2)

_|_




We then repeat the same process to write gb(”)(m)
in terms of (™) (z_3) and the other derivatives
of lower order at z,x_q1,z_o and xz_3. Clearly
there is no obstacle for us to go from z_3 to
r_4,x_5,-+-. VVWe at the end obtain a way to
compute ¢{(™)(z) by using the the lower deriva-
tives of f,gand ¢ at x,x_1,x_»o,---.

Step 2 Let us assume that n < r and ¢(9(z)
exists for all © < n. Further assume that there
exist Kn > 0 such that [¢(™) ()| < Kn.

According to Step 1, we have an iteration pro-
cess to determine ¢{"t1)(z) based on the lower
derivatives. So for ¢(nt1)(2) to exist it suffices
for us to show that the formal computational
process detailed in Step 1 converges.

Recall that
(n) _ A+ fo + £y (@) (n)
A (75 R C T DA
N P

(w1 +gy+ Qb/(w—l)fy),



from which we obtain

6 (2)| < alp(™ (z_1)| + b

where a < 1 is a constant and b is also a con-
stant that is a dependent of K,, and n. Use
this inequality inductively, we obtain

6™ (x)] < O ab)b < (1 —a) .

This estimate implies the convergence of the
indicated iteration process therefor the exis-
tence of #(™(z). We have finished the proof
of Theorem 3.

4. Extensions of Theorem 1-3

A. Maps of higher dimensions

In our discussion we restricted ourselves to the two di-
mensional case. This restriction is not necessary. The
argument we made can be generalized in a straight for-
ward fashion to higher dimensional maps (using a little
more of the terms and conclusions of matrix analysis in
linear algebra).



et us state formally the higher dimensional
version of theorems 1-3:

For k <n let x € R%, y ¢ R" % and (z,y) € R™.
Let T : R™ be such that

Atz + a(z,y)
y1 = A’y+ B(z,y)

where A¥ isa kxk,and ASisa (n—k)x(n—k)
constant matrix. Assume that

L1

(i) The magnitude of all eigenvalues of A% is
large than 1, and the magnitude of all eigen-
values of A% is smaller than 1;

(i) llallo1, [|Bllcr < € and the C"-norms of «a
and B are uniformly bounded on R",

Theorem Let T be as in the above satisfying
(i) and (ii), and assume that ¢ is appropriately



small. The there exists a unique k-dimensional
manifolds W% = {(z,¢(x))} such that

(a) WU is T-invariant, and ¢ : = — R¥ is a
C"-mappings of uniformly bounded C"-norms.

(b) There exist K, A > 1, such that Vz,y € W4,
d(T"(x), T"(y)) > K 'X'd(z,y).

For all n > 0.

Similarly, there exists a unique W* = {(¥(y),y)}, (n—k)-
dimensional, such that

(a)’ W* is T-invariant, and ¢ : z — R* is a C"-mappings
of uniformly bounded C"-norms.

(b)" There exist K, u < 1, such that Vz,y € W#,
d(T"(z), T™(y)) < Kp"d(z,y).

This Theorem is a simple generalization of The-
orem 1-3 above.



B. Local stable and unstable manifold theo-
rem for hyperbolic fixed points

Let T : R" — R"™ be C"-diff and g € R"™ be
such that T'(zg) = zg. Let A = DT;, be the
tangent map of T at zg.

Definition: We say that xg is a hyperbolic
fixed point if DTz, has no eigenvalues of mag-
nitude 1.

Let us assume that T is C"-diff and zg is a
hyperbolic fixed point. Let us write the eigen-
values of DT,, of magnitude > 1 as AY =
{1, - A}, and the rest as AS = {1, -ty }-
Let E% be the eigen-space for AY and E?° be the
eigen-space for A°. EY is a k-dimensional sub-
space, ES is (n—k)-dimensional and ES+ E% =
R™,



Theorem In a sufficiently small neighborhood
of x(g, there exists a k-dimensional C"-embedded
disk, which we denote as W¥%(xq), such that

(i) T~1(W¥(z0)) C W¥(z0).

(ii) There exists K > 0 and A > 1 such that
Ve, y € W%(xzg), we have

d(T™"(z), T "(y)) < K(A) "d(z,y)
for all n > O.

(iii) W¥(zq) is tangent to E* at xg.

Similarly, there is a n — k-dimensional C"-embedded disk
through zo, which we denote as W#(zg), such that

(i) T(W?(zo0)) C W?(zo).
(ii)" There exists K’ and p < 1 such that Vz,y € W*(zo),

d(T"(z), T"(y)) < Ku"d(z,y)
for all n > O.

(iii) W* is tangent to E° at xo.



An outline of proof: (a) Make coordinate
change  — = — xg to move the fixed point to
=0 in R".

(b) Make a linear coordinate change to transfer

DTy, into
_ [ Au O
(5 1)

such that the eigenvalues of A, is AY and the
eigenvalues of Ag is A%,

(c) In a sufficiently small neighborhood of (z, y)
0 where z € RF, y € R*"~ % T is written as

Aucz;—l—a(a:,y)
y1 = Asy+ B(x,y)

L1

(d) Note that a(x,y) and B(x,y) might be large
when we are away from (z,y) = (0,0). How-
ever, we can always define as new map 7T such



that (i) T = T in a sufficiently small neighbor-
hood of (0,0), and (ii) C! norm of T are as
small as we want.

(e) We now apply previous proposition to 7.

C. Local stable and unstable manifold theo-
rem for periodic orbits

Let T': R" — R"™ be C"-diff and zg is such that
there exists p > 1 such that TPzqg = zg. We
say that xg is a periodic point of period p.

Definition: We say that xg is a hyperbolic
periodic point if it is a hyperbolic fix point for
TP,

Let us assume that T is C"-diff and zg is a hy-
perbolic periodic point. Let z; = T'zg. Then
we have



Theorem Forevery z;,0 <1 < p, there exists a
small neighborhood B(z;), such that in B(x;),
there exists a k-dimensional C"-embedded disk,
which we denote as W%(x;), such that

(i) T7H(W¥(z;)) C W(wi1).

(i) There exists K,A > 1 such that Vz,y €
W4(z;), we have

d(T™(x), T""(y)) < K~ (\)"d(z,y)
for all n > 0.

Similarly, there is a (n — k)-dimensional C"™-embedded
disk through z;, which we denote as W?*(x;), such that

()" T(We(z;)) C Wi (Zit1).
(ii)" There exists K’ and p < 1 such that Vz,y € W*(zo),
d(T"(z), T"(y)) < Kp"d(z,y)

for all n > 0.



This theorem follows from applying the previ-
ous Theorem to TP,

D. Local stable and unstable manifold theo-
rem for hyperbolic orbit

We now extend the stable and unstable man-
ifold theorem to a ‘hyperbolic orbit’, which is
not necessarily periodic. We start with the
definition of a hyperbolic orbit.

Definition Let {z;}2 __ be a given orbit of
a C"-diff T : R — R". We say that {z;} is
a hyperbolic orbit if there exists E,}L and E,f,
subspaces of dimensions k£ and n—k, E,}L—|—E;f =
R™ such that

(i) DTy, (EY) = DTy, (E$) =

By [ZARE

(ii) There exists A > 1 such that ||DTg,7| >
A|7|l, ¥ € E*. We also have u < 1 such that
| DTz, 7| < pl|T|| VT € E;.



Remark: In practice, it is hard to identify EY and E?
explicitly for a hyperbolic orbit. We usually replace it by
the so called invariant cone condition.

First let £ € R™ be a k-dimensional subspace,
and EL1 be the orthogonal complement. For
every T € R", we write

T=x+Y
where z € E and y € E+. We call

==t o

a cone of size v centered around FE.

Definition We say that {z;}, an orbit of T,
satisfies hyperbolic cone condition. If there
exists two cone families {C!'}, {C’} of size ~
around {E}}, {E7} respectively for some v > 0,
such that

(i) DTw,C}t C Cyqi DT PCE C CEy .



(ii) There exists A > 1 such that |DTy,7| > A|7]
for all 7 € Cf*. Similarly, we have DT, 7| > A|7|
for all 7 € C?.

Claim: If {z;} satisfies the hyperbolic cone

condition, then it is a hyperbolic orbit.

Proof: The proof of this claim is a straight forward
generalization of Theorem 2. Note that for the mapping
T studies in Theorem 1-3, every orbit satisfies the hyper-
bolic cone condition therefore all orbits are hyperbolic.
The second step of the proof of Theorems 2 consists
of (a) check the cone condition, then (b) to prove that

the hyperbolic cone condition implies the existence of
DT-invariant stable and unstable subspaces.

Let {x;} be a hyperbolic orbit for a C"-diff T.

Theorem For all z;, ¢ € Z, there exists a
small neighborhood B(z;), such that in B(x;),
there exists a k-dimensional C"-embedded disk,
which we denote as W¥%(z;), such that

(i) T7H(W¥(z;)) C W(zi-1).



(iil) There exists K,A > 1 such that Vz,y €
W4%(x;), we have

(T ™(z), T "(y)) < K~ 1(\)""d(z,y)
for all n > O.

Similarly, there is a n — k-dimensional C"™-embedded disk
through z;, which we denote as W?*(x;), such that

()" T(W(z:)) C Wo(@ig1)-

(ii)" There exists K’ and p < 1 such that Vz,y € W*(zo),
d(T"(z), T"(y)) < Kp"d(z,y)

for all n > 0.

We also have W4%(x;), W#(x;) are tangent to
EY and E? respectively at z; for all i.

Remarks: (1) To prove this theorem, we need to prove
a more general version of Theorem 1-3. However, the
essence of the proof are the same.



(2) This theorem now implies that through every point
in R™, there exists a local stable and unstable manifold
for T studied in Theorem 1-3.

E. Conjugate to linear mappings

Theorem Assume that zg is a hyperbolic fixed
point of a Cl-diff T. Then in a sufficiently
small neighborhood of zg, T is conjugate topo-
logically to the tangent map v — DTzu.

An outline of proof: (a) We conjugate T re-
stricted on W¥(zqg) to DT}, restricted to E%(zq)
and W9(xzg) to E%(zg). (This is not hard since
we already have proved the existence and the
smoothness of W% (xg) and W43(xzg). Also, the
restricted flow are basically uniform contrac-
tions).

(b) (See remark (2) in the above) There ex-
ist stable and unstable manifold for every p €



W4%(zg) and g € WS(xg). We need to further
prove that these manifolds are actually contin-
uously depending on the base points. We also
need to prove that for Vp € W% (zg) \ {zo},q €

W#(zg) \ {zo},
W=(p) N W*"(q)

contains only one point. Denote this intersec-
tion as (p + q). We also need to prove that

(p,q) — (p+ q) is continuous.

(c) Let hy : E¥ — W¥%(zg) and ho : E° —
W3(zg) be the conjugacies claimed in (a). Then

h:p+q— (h1(p) + h2(q))



IS the desired conjugacy.

F. Hartman’'s Theorem

T heorem:

Proof:. All we need is to conjugate two linear
mappings with the same stable and unstable
dimensions.

Remark The conjugating mapping h constructed in
Hartman’'s theorem is a homeomorphism. Let us make
the observation that h n general is not differentiable.

Let T and S be two differentiable mappings from R" to
R™ such that T(0) = 0, S(0) = 0. Hartman’s theorem
claims that T is topologically conjugate to S if, around
z = 0, T and S have the same stable and unstable di-
mensions, i.e. DT and DS have the same number of
eigenvalues with magnitude < 1.

If h is differentiable, then from
Toh=holS,
we have
DT -Dh = Dh-DS — DS = (Dh)"'DT(Dh).



This will require that DT and DS possess the identical
set of eigenvalues. A much stronger requirement.

Most of the times we regard two systems as the same if
there exists a conjugating function h that is a home-
omorphism. Differentiable conjugates usually are re-
garded as too much to ask.



