## Math 454, Home Work

(I) Answer the following questions for the equation

$$
\frac{d x}{d t}=-x+y+x^{2}+x y+x^{3}, \quad \frac{d y}{d t}=x-y+x^{2}+x y+y^{3}
$$

(a) Is this a one-zero eigenvalue case at $(0,0)$ ?
(b) Use a linear change of variables to turn this equation into standard form.
(c) Calculate the leading term of the center manifold.
(d) Determine the stability of $(0,0)$.
(II) Determine the stability of given equations at $(0,0)$ by first calculate the leading term of the center manifold.
(a) $\frac{d x}{d t}=-x^{2}-y^{2}, \quad \frac{d y}{d t}=-y$.
(b) $\frac{d x}{d t}=x^{3}-y^{2}, \quad \frac{d y}{d t}=-y+x^{2}$.
(c) $\frac{d x}{d t}=y, \quad \frac{d y}{d t}=-y+x^{2}$.
(III) Show that the equilibrium point at $(0,0)$ of the system

$$
\frac{d x}{d t}=x y+a x^{3}+b x y^{2}, \quad \frac{d y}{d t}=-y+c x^{2}+d x^{2} y
$$

is (a) asymptotically stable if $a+c<0$, and (b) asymptotically unstable if $a+c>0$.
(IV) Consider the system

$$
\frac{d x}{d t}=-x^{3}, \quad \frac{d y}{d t}=-y+x^{2}
$$

(a) Write $h(x)=\sum_{n=1}^{\infty} h_{n} x^{n}$. Calculate $h_{n}$ for all $n$.
(b) Determine the radius of convergence of $h(x)$ obtained in (a).
(c) Is $(0,0)$ a stable or unstable fix point?

