Variable Selection and Regularization

Sanford Weisberg

October 15, 2012

Variable Selection

In a regression problem with p predictors, we can reduce the dimension of the regression problem
in two general ways:

e Replace x1,...,7p, by 21,...,2¢, where ¢ < p and z; = ﬂ}xj is a linear combination of

the original p predictors. Nonlinear combinations are also possible, but not commonly
used in the context we are studying. The most common methods that reduce dimension
in this was are principal components regression, and newer methods like SIR. These will
be discussed later in the semester. In addition, the usual linear model, and generalized
linear model, are also special cases of this type of dimension reduction, provided that
interactions and basis functions like polynomials and splines are not used.

Devise some method for removing some of the predictors. If we concentrate on expecta-
tions, we could seek to find a partition x = (zg,xp) such that

E(ylrg,zp) = E(y|za)

so once we know the “good” variables xz the deleted variables xp provide no further
information.

We expect the model without xp to be “better” in the sense estimates should be more precise
and predictions should be better.

Forward stepwise regression

We start with an initial class of models, e.g., E(Y|X) = a + #'X, Var(Y|X) = o2, which is
the linear regression model. All that is uncertain is which elements of 8 should be zero, and
so dimension reduction is equivalent to finding the zeroes in 8. We allow elements of X to be
functionally related to allow for interactions and basis functions.

The usual forward selection algorithm is as follows:

1

2.

Start with all elements of 5 = 0. Set k = 0.

Increment k — k + 1.

. At step k, add the variable that optimizes a criterion, usually reduction in deviance, or

an information criterion like AIC or BIC.

. Stop if a stopping criterion is met or if all variables have been added. Older programs

like SPSS use a “t to enter” criterion, while newer programs like step in R continue until
AIC increases by the next deletion. See also Benjamini and Gavrilov (2009, Annals) for
an FDA based method for stepwise regresion. If the criterion is not met, go to step 2.

Here is an example of the forward algorithm applied to the Australian Athletes data, in
which we take lean body mass LBM as the response. The step function in base R can be used
for stepwise regression. Next, we read the data, transform, center and scale (this is required for
the lasso, following), and fit the null and full models and then forward stepwise regression.

library(alr3)

set.seed (1)

test <- sample(1:202,150,replace=FALSE)

aisO <- with(ais,data.frame(LBM=LBM,logSSF=log(SSF),logWt=1log(Wt),Sex=Sex,
logHg=log (Hg) ,logHt=1o0g (Ht) ,10gRCC=10g (RCC),logHc=1log(Hc),
logWCC=1og (WCC) ,logFerr=1log(Ferr)))

ais0 <- as.data.frame(scale(ais0))

m0 <- 1Im(LBM~1,aisO, subset=test)

ml <- update(m0,LBM~logWt+logSSF+10ogRCC+Sex+logHg+logHt+logWCC+logHc+logFerr)

(f <- as.formula(paste("~",paste(names(coef(m1))[-1],collapse="+"))))

V V VYV + 4+ VVVYyV

“logWt + logSSF + logRCC + Sex + logHg + logHt + logWCC + logHc +
logFerr

> step(m0, scope=list(lower="1, upper=f), direction="forward")

Start: AIC=-2.18

LBM ~ 1

Df Sum of Sq RSS AIC
+ logWt 1 121.995 23.885 -271.606
+ logHt 1 95.002 50.878 -158.180
+ Sex 1 86.966 58.914 -136.182
+ logHg 1 57.015 88.866 -74.527
+ logHc 1 52.160 93.720 -66.548
+ logRCC 1 45.352 100.529 -56.029
+ logFerr 1 16.583 129.297 -18.279
+ logSSF 1 5.711 140.169 -6.168
<none> 145.880 -2.178
+ logWCC 1 0.450 145.430 -0.641

Step: AIC=-271.61

LBM ~ logWt

Df Sum of Sq RSS AIC
+ 1logSSF 1 19.5004 4.3849 -523.87
+ Sex 1 14.8796 9.0057 -415.92
+ logHg 1 7.9754 15.9099 -330.55
+ logHic 1 7.8151 16.0701 -329.05
+ 1ogRCC 1 6.8500 17.0352 -320.30
+ logHt 1 2.1569 21.7284 -283.80
+ logFerr 1 1.7648 22.1204 -281.12

<none> 23.8853 -271.61
+ logWCC .1081 23.7772 -270.29

[
o

Step: AIC=-523.87
LBM ~ logWt + logSSF

Df Sum of Sq RSS AIC
+ Sex 1 0.196906 4.1880 -528.76
+ logFerr 1 0.077894 4.3070 -524.56
<none> 4.3849 -523.87
+ logRCC 1 0.031962 4.3529 -522.97
+ logHt 1 0.028476 4.3564 -522.85
+ logHg 1 0.012304 4.3726 -522.29
+ logHc 1 0.007048 4.3779 -522.11
+ logWCC 1 0.000008 4.3849 -521.87

Step: AIC=-528.76
LBM © logWt + logSSF + Sex

Df Sum of Sq RSS AIC
<none> 4.1880 -528.76
+ logHt 1 0.0306762 4.1573 -527.86
+ logFerr 1 0.0181920 4.1698 -527.41
+ logRCC 1 0.0023285 4.1857 -526.85
+ logHc 1 0.0007616 4.1872 -526.79
+ logWCC 1 0.0005516 4.1874 -526.78
+ logHg 1 0.0003442 4.1877 -526.77
Call:

lm(formula = LBM ~ logWt + logSSF + Sex, data = aisO, subset = test)

Coefficients:
(Intercept) logWt logSSF Sex
-0.003095 0.937928 -0.317341 -0.075316

The algorithm adds variables, one at a time, until adding the next variable increases, rather
than decreases, the value of AIC.

To draw the graph that is shown in Figure 1, I'm going to repeat this calculation, but is the
stepAIC function from the MASS package because it allows saving and manipulating computed
values from each step in the process.

First is presented a function that will extract the information, given a model m1 and a null
model m0. The keep argument to stepAIC is used to keep only the coeflicient estimates at
each step. The function FScoefs calls stepAIC and keeps the estimated coefficient vector at
each step, with zeroes filled-in for variables not included in the current mean function. Also,
in the call the call to stepAIC, set k = 0. The criterion for selecting a subset is to minimize
RSS + kp, where p is the number of predictors. The choice of k& = 2 is the default gives AIC,
while k = log(n) gives BIC. By setting k = 0, we minimize RSS, which means we also continue
to the “full” model.

> library (MASS)

> FScoefs <- function(mO, ml, data, trace=FALSE) {
+ keepCoef <- function(m, aic) {

+ all <- names(coef(m1))

ans

}

+ + + + + + + + +

out$keep}

new <- names (coef (m))
ans <- rep(0,length(all))
ans[match(new,all)] <- coef(m)

> print(coefs <- FScoefs(mO,ml1,ais0), digits=2)

[,1]
(Intercept) 0.047 O
loghit 0.000 O
logSSF 0.000 O
logRCC 0.000 0
Sex 0.000 0
logHg 0.000 O
logHt 0.000 O
logWCC 0.000 0
logHc 0.000 O
logFerr 0.000 O

[,10]
(Intercept) -0.0041
loghit 0.9665
logSSF -0.3290
logRCC 0.0322
Sex -0.0679
logHg -0.0182
logHt -0.0272
logWCC -0.0025
logHc -0.0172
logFerr 0.0102

[,2]
.012
.923
.000
.000
.000
.000
.000
.000
.000
.000

> n <- length(coef(m1))-1
> steps <- 0:(dim(coefs) [2]-1)

Finally, draw the plot:

matplot (steps,t(coefs[-1,]),1ty=1,type="1",x1im=c(0,n+2),

(,3]

.0083
.9899
.3696
.0000
.0000
.0000
.0000
.0000
.0000
.0000

[,4]

.0031
.9379
.3173
.0000
.0753
.0000
.0000
.0000
.0000
.0000

>

+ xlab="Step number",ylab="Coef est")
> xpos = rep(rev(steps)[1],4)
>
>

ypos = coefs[2:5,xpos[1]]

(,5]

.0025
.9599
.3228
.0000
.0757
.0000
.0267
.0000
.0000
.0000

[,6]

.0022
.9588
.3244
.0000
.0693
.0000
.0234
.0000
.0000
.0096

text (xpos, ypos,rownames (coefs) [2:5],cex=0.6,pos=4)

(,7]

.0025
.9626
. 3267
.0000
.0726
.0071
.0258
.0000
.0000
.0092

out <- with(data,stepAIC(mO, scope=list(lower="1, upper=f), k=0,
trace=trace, keep=keepCoef, direction="forward"))
rownames (out$keep) <- names (coef (m1))

(,8]

.0039
. 9667
.3285
.02562
.0687
.0289
.0281
.0000
.0000
.0109

(,9]

.0041
.9666
.3296
.0319
.0679
.0182
.0270
.0000
.0177
.0103

The figure shows the estimates for each variable at each step in the process. We have no
stopping rule here, so the process is continued until all variables are included. At step zero, all
coefficient estimates are zero. Coefficients become non-zero one at a time, and eventually reach
their ols estimates from the “full” model.

The advantages of stepwise regression are:

] logWt

0.8

0.4

Coef est

logRCC
Sex

0.0

logSSF
I I I I I I

0 2 4 6 8 10

Step number

Figure 1: Variable trace for stepwise regression.

1. Familiar, easily explained, widely used and implemented
2. Easily extended to other regression problems
3. Works pretty well, particularly for large n
4. Can be improved by fancy stopping rules
There are also several disadvantages:

1. Computational compromise to avoid “all possible” model computation. The machine learn-
ing people call “all possible” a greedy search.

2. Based on a model; if model is wrong, selection may be wrong.

3. Based on correlations only.

Lasso and regularization

Regularization has been intensely studied on the interface between statistics and computer
science. We describe the basic idea through the lasso, Tibshirani (1996), as applied in the
context of linear regression The method starts by assuming a model like E(y|X = z) = a+ 'z
and Var(Y|X) = 2. The variable selection problem is formulated as finding the elements of /3
that equal zero. Estlmates are chosen to minimize

argmlnz — o — fB'z;)? subject to Z 1B <t
This is equivalent to minimizing

1
2n

(yi —a—B'z:)* + 216

which is just the usual least squares criterion with a penalty determined by A\ for large coefficient
estimates. If A = 0 the lasso is the same as OLS; as A increases, shorter vectors are preferred.

Figure 2: How lasso, works, from Tibshirani, 1996. The elliptical contours are centered at the
ols estimator 3 are of the residual sum of squares function {8|(8 — 8)'X'X (8 — B) = k}.

There are many variations on this procedure, including application of it to other-than the linear
model. Very high quality software in the package glmnet by Jerome Friedman, Trevor Hastie,
Rob Tibshirani, is available in R. It computes estimates for a large number of values for A
at once. The “optimal” X is selected by cross validation of some sort, although the validation
procedure does not seem to be part of the glmnet package and you need to write your own.

Figure 2 illustrates how the lasso works, in the special case of exactly p = 2 predictors.
The ellipses are contours of constant residual sum of squares, which is minimized at the point
marked B . As you move away from 3 the residual sum of squares increases, but all points on
the same elliptical contour have the same value of RSS.

The black square is the set of vectors that satisfy the constraint }_ |5;| < A, and for given A
the estimator will be the point with smallest residual sum of squares, and so the lasso estimator
will be the point in the black square, or clearly on the boundary of the black square unless
B = 0, that lies on the contour closest to B From the figure we can see that this will happen at
one of the vertices of the black figure, at which one of the j3; is estimated to be exactly zero and
the other is estimated to be non-zero. If the black figure is expanded, eventually the estimates
of all the 8; will become non-zero, until for large enough A the OLS estimate will be obtained.
Thus for A = 0 we get all estimates equal zero, and for very large A we get the OLS estimate.

Computing with glmnet

An important property of the lasso procedure is that it is not invariant to linear transformations
of the predictors, because of the penalty based on absolute value of 8. As a result it is “usual” to
scale the data before beginning the analysis, usually to correlation scale. The glmnet package
uses a very fast computing algorithm to compute estimates for many values of the penalty
A simultaneously. The “answer” requires selecting a value of A, and this is done using cross-
validation.

The most important function to use in the glmnet package is called cv.glmnet. The function
glmnet is first run to get a sequence of A-values that corresponding to getting one additional non-
zero coefficient. Given this sequence of potential As, the program does n-fold cross-validation,
with n = 10 by default, to estimate error, so glmnet is run n times, each with a fraction (n—1)/n

of the data, and prediction errors are accumulated on the remaining fold.
Here is the call to cv.glmnet for the example:

> library(glmnet)

> X <- as.matrix(aisO[, -1])

> Y <- aisO[, 1]

> ans <- cv.glmnet(X[test,], Y[test], standardize=FALSE)

Unlike most other functions we have seen, glmnet does not have a formula interface and you
must specify the response and predictors explicitly. The argument standardize=FALSE is used
because the data are already standardized.

The glmnet fit to all the (test) data is stored as ans$glmnet.fit. We can get the variable
trace using

> par(mfrow=c(1, 2))
> plot(ans$glmnet.fit, "norm", label=TRUE)
> plot(ans$glmnet.fit, "lambda", label=TRUE)

o 1 2 2 2 3 3 5 3 3 2 2 0
(o] (o]
% o | % o |
[[
o . o .
S S
= N = N
8 o] 8 o]
O O o
AN AN
o o
| |
T T T T T T T T T T T T T
00 02 04 06 08 10 1.2 -5 -4 -3 -2 -1 0
L1 Norm Log Lambda

This is a variable trace, just as with stepwise regression, but of course the trace is different.
There is also a plot method for the cross-validation:

> plot(ans)

5555433333222210

Mean-Squared Error

.
«
o
T3
s
......

0.0 0.2 04 06 0.8 1.0

log(Lambda)

The standard error bars on the plot are estimated using the cross-validation. The minimum
value of A is

> ans$lambda.min
[1] 0.004810643

and a larger value of A whose mean-square error is 1 SE larger is

> ans$lambda. lse
[1] 0.04486422
> coef(ans, s=ans$lambda.lse)

10 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) 0.006909257
logSSF -0.209076476
loghit 0.828613895
Sex -0.150802426
logHg
logHt
logRCC
logHc
logWCC
logFerr

Apparently, the default is to use the lambda. 1se as the solution.
Finally we can compute how well this does by applying the answer to the validation set.

rss <- function(pred){

error <- (Y - pred)~2

c(Construction = sqrt(sum(error[test])/length(test)),

Validation= sqrt (sum(error[-test])/(length(Y)-length(test))))

}
rss.lassomin <- rss(predict(ans$glmnet.fit, s=ans$lambda.min, newx=X))
rss.lassolse <- rss(predict(ans$glmnet.fit, s=ans$lambda.lse, newx=X))
befit <- stepAIC(mO,scope=list(lower="1,upper=f),trace=F,direction="forward")
rss.be <- rss(predict(befit,ais0))
rss.ols <- rss(predict(ml,ais0))
rbind(rss.lassomin, rss.lassolse, rss.be, rss.ols)

vV VVVVYV + + + + V

Construction Validation
rss.lassomin 0.1669376 0.1984795
rss.lassolse 0.1852774 0.2040184
rss.be 0.1670927 0.2012853
rss.ols 0.1657397 0.2005369

Here are some advantages of the lasso method.

1. Large n, large p the linear model will be approximately OK.

2. p >> n can be handled with this method and the automatic procedure produces an
answer.

3. The argument family=c("gaussian", "binomial", "poisson", "multinomial", "cox")
extends the method to continuous, binomial, and other problems.

4. Enormous literature of extensions and modifications
Here is a list of disadvantages.

1. The initial “full” model specification must include the “true” model as a special case or
else information is lost. That occurs in this example in which the possibility that effects
might differ by Sex are not included and are therefore not discovered.

2. The method is not invariant under rescaling columns of X or multiplying by a nonsingular
matrix. The default is to scale all columns to have variance one, essentially working with
a correlation matrix, but multiplication by a nonsingular matrix may completely change
the results.

3. The method depends only on correlation coefficients, not on the original data, so it is
likely to be sensitive to any modeling problems.

GlaucomaM

show <- function(tt){
print (tt)
cat (paste("Misclassification rate =", round(1-sum(diag(tt))/sum(tt), 2),"\n"))
invisible()}

data(GlaucomalM, package="ipred")

set.seed(123456)

const <- sample(1:198, 150)

library(randomForest)

b2 <- randomForest(Class ~., GlaucomaM, subset=const)

show(with(GlaucomaM, table(actual=Class[const], predicted=predict(b2))))

V VVVVYV + + +V

predicted
actual glaucoma normal
glaucoma 62 14
normal 13 61
Misclassification rate = 0.18

> show(with(GlaucomaM, table(actual=Class[-const],
+ predicted=predict (b2, newdata=GlaucomaM[-const, 1))))

predicted
actual glaucoma normal
glaucoma 18 4
normal 3 21
Misclassification rate = 0.15

> X <- as.matrix(GlaucomaM[, -63])
> Y <- as.factor(GlaucomaM[, 63])

> 12 <- cv.glmnet (X[const,], Y[const], family="binomial")
> show(table(actual=Y[const],
+ predicted=predict (12, newx=X[const,], type="class")))

predicted
actual glaucoma normal
glaucoma 64 12
normal 13 61
Misclassification rate = 0.17

> show(table(actual=Y[-const],
+ predicted=predict (12, newx=X[-const,], type="class")))

predicted
actual glaucoma normal
glaucoma 18 4
normal 6 18
Misclassification rate = 0.22

10

