Variable Selection and Regularization Sanford Weisberg October 15, 2012 # Variable Selection In a regression problem with p predictors, we can reduce the dimension of the regression problem in two general ways: - Replace x_1, \ldots, x_p , by z_1, \ldots, z_q , where q < p and $z_j = \beta'_j x_j$ is a linear combination of the original p predictors. Nonlinear combinations are also possible, but not commonly used in the context we are studying. The most common methods that reduce dimension in this was are principal components regression, and newer methods like SIR. These will be discussed later in the semester. In addition, the usual linear model, and generalized linear model, are also special cases of this type of dimension reduction, provided that interactions and basis functions like polynomials and splines are not used. - Devise some method for removing some of the predictors. If we concentrate on expectations, we could seek to find a partition $x = (x_G, x_D)$ such that $$E(y|x_G, x_D) = E(y|x_G)$$ so once we know the "good" variables x_G the deleted variables x_D provide no further information. We expect the model without x_D to be "better" in the sense estimates should be more precise and predictions should be better. ### Forward stepwise regression We start with an initial class of models, e.g., $E(Y|X) = \alpha + \beta'X$, $Var(Y|X) = \sigma^2$, which is the linear regression model. All that is uncertain is which elements of β should be zero, and so dimension reduction is equivalent to finding the zeroes in β . We allow elements of X to be functionally related to allow for interactions and basis functions. The usual forward selection algorithm is as follows: - 1. Start with all elements of $\beta = 0$. Set k = 0. - 2. Increment $k \to k+1$. - 3. At step k, add the variable that optimizes a criterion, usually reduction in deviance, or an information criterion like AIC or BIC. - 4. Stop if a stopping criterion is met or if all variables have been added. Older programs like SPSS use a "t to enter" criterion, while newer programs like step in R continue until AIC increases by the next deletion. See also Benjamini and Gavrilov (2009, Annals) for an FDA based method for stepwise regresion. If the criterion is not met, go to step 2. Here is an example of the forward algorithm applied to the Australian Athletes data, in which we take lean body mass LBM as the response. The **step** function in base R can be used for stepwise regression. Next, we read the data, transform, center and scale (this is required for the lasso, following), and fit the null and full models and then forward stepwise regression. ``` > library(alr3) > set.seed(1) > test <- sample(1:202,150,replace=FALSE)</pre> > ais0 <- with(ais,data.frame(LBM=LBM,logSSF=log(SSF),logWt=log(Wt),Sex=Sex, logHg=log(Hg),logHt=log(Ht),logRCC=log(RCC),logHc=log(Hc), logWCC=log(WCC),logFerr=log(Ferr))) > ais0 <- as.data.frame(scale(ais0))</pre> > m0 <- lm(LBM~1,ais0, subset=test)</pre> > m1 <- update(m0,LBM~logWt+logSSF+logRCC+Sex+logHg+logHt+logWCC+logHc+logFerr) > (f <- as.formula(paste("~",paste(names(coef(m1))[-1],collapse="+"))))</pre> ~logWt + logSSF + logRCC + Sex + logHg + logHt + logWCC + logHc + logFerr > step(m0, scope=list(lower=~1, upper=f), direction="forward") Start: AIC=-2.18 LBM ~ 1 Df Sum of Sq RSS AIC 121.995 23.885 -271.606 + logWt 1 + logHt 1 95.002 50.878 -158.180 + Sex 86.966 58.914 -136.182 1 + logHg 1 57.015 88.866 -74.527 + logHc 1 52.160 93.720 -66.548 45.352 100.529 -56.029 + logRCC 1 + logFerr 1 16.583 129.297 -18.279 5.711 140.169 + logSSF 1 -6.168 <none> 145.880 -2.178 + logWCC 1 0.450 145.430 -0.641 Step: AIC=-271.61 LBM ~ logWt Df Sum of Sq RSS AIC + logSSF 1 19.5004 4.3849 -523.87 14.8796 9.0057 -415.92 + Sex 1 + logHg 1 7.9754 15.9099 -330.55 + logHc 7.8151 16.0701 -329.05 1 + logRCC 6.8500 17.0352 -320.30 1 2.1569 21.7284 -283.80 + logHt 1 + logFerr 1.7648 22.1204 -281.12 <none> 23.8853 -271.61 0.1081 23.7772 -270.29 + logWCC 1 ``` ``` Step: AIC=-523.87 LBM ~ logWt + logSSF Df Sum of Sq RSS AIC + Sex 0.196906 4.1880 -528.76 + logFerr 0.077894 4.3070 -524.56 <none> 4.3849 -523.87 + logRCC 0.031962 4.3529 -522.97 1 + logHt 0.028476 4.3564 -522.85 + logHg 0.012304 4.3726 -522.29 + logHc 0.007048 4.3779 -522.11 1 + logWCC 0.000008 4.3849 -521.87 Step: AIC=-528.76 LBM ~ logWt + logSSF + Sex Df Sum of Sq RSS AIC <none> 4.1880 -528.76 + logHt 1 0.0306762 4.1573 -527.86 + logFerr 1 0.0181920 4.1698 -527.41 + logRCC 1 0.0023285 4.1857 -526.85 1 0.0007616 4.1872 -526.79 + logHc + logWCC 1 0.0005516 4.1874 -526.78 + logHg 1 0.0003442 4.1877 -526.77 Call: lm(formula = LBM ~ logWt + logSSF + Sex, data = ais0, subset = test) Coefficients: (Intercept) logWt logSSF Sex -0.003095 0.937928 -0.317341 -0.075316 ``` The algorithm adds variables, one at a time, until adding the next variable increases, rather than decreases, the value of AIC. To draw the graph that is shown in Figure 1, I'm going to repeat this calculation, but is the stepAIC function from the MASS package because it allows saving and manipulating computed values from each step in the process. First is presented a function that will extract the information, given a model m1 and a null model m0. The keep argument to stepAIC is used to keep only the coefficient estimates at each step. The function FScoefs calls stepAIC and keeps the estimated coefficient vector at each step, with zeroes filled-in for variables not included in the current mean function. Also, in the call to stepAIC, set k = 0. The criterion for selecting a subset is to minimize RSS + kp, where p is the number of predictors. The choice of k = 2 is the default gives AIC, while $k = \log(n)$ gives BIC. By setting k = 0, we minimize RSS, which means we also continue to the "full" model. ``` > library(MASS) > FScoefs <- function(m0, m1, data, trace=FALSE) { + keepCoef <- function(m, aic) { + all <- names(coef(m1))</pre> ``` ``` + new <- names(coef(m))</pre> ans <- rep(0,length(all)) ans[match(new,all)] <- coef(m) ans } out <- with(data,stepAIC(m0, scope=list(lower=~1, upper=f), k=0, trace=trace, keep=keepCoef, direction="forward")) rownames(out$keep) <- names(coef(m1))</pre> out$keep} > print(coefs <- FScoefs(m0,m1,ais0), digits=2)</pre> [,1] [,6] [,2] [,3] [,4] [,5] [,7] [,8] [,9] (Intercept) 0.047 0.012 -0.0083 -0.0031 -0.0025 -0.0022 -0.0025 -0.0039 -0.0041 logWt 0.000 0.923 0.9899 0.9379 0.9599 0.9588 0.9626 0.9667 logSSF 0.000 0.000 -0.3696 -0.3173 -0.3228 -0.3244 -0.3267 -0.3285 -0.3296 logRCC 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0252 0.0319 Sex 0.000 0.000 0.0000 -0.0753 -0.0757 -0.0693 -0.0726 -0.0687 -0.0679 logHg 0.000 0.000 0.0000 0.0000 0.0000 0.0000 -0.0071 -0.0289 -0.0182 0.000 0.000 0.0000 0.0000 -0.0267 -0.0234 -0.0258 -0.0281 -0.0270 logHt logWCC 0.000\ 0.000\ 0.0000\ 0.0000\ 0.0000\ 0.0000\ 0.0000\ 0.0000 logHc 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0177 logFerr 0.000 0.000 0.0000 0.0000 0.0000 0.0096 0.0092 0.0109 0.0103 [,10] (Intercept) -0.0041 logWt 0.9665 logSSF -0.3290 logRCC 0.0322 Sex -0.0679 logHg -0.0182 logHt -0.0272 logWCC -0.0025 logHc -0.0172 logFerr 0.0102 > n <- length(coef(m1))-1 > steps <- 0:(dim(coefs)[2]-1) Finally, draw the plot: > matplot(steps,t(coefs[-1,]),lty=1,type="1",xlim=c(0,n+2), xlab="Step number",ylab="Coef est") > xpos = rep(rev(steps)[1],4) > ypos = coefs[2:5, xpos[1]] > text(xpos,ypos,rownames(coefs)[2:5],cex=0.6,pos=4) ``` The figure shows the estimates for each variable at each step in the process. We have no stopping rule here, so the process is continued until all variables are included. At step zero, all coefficient estimates are zero. Coefficients become non-zero one at a time, and eventually reach their ols estimates from the "full" model. The advantages of stepwise regression are: Figure 1: Variable trace for stepwise regression. - 1. Familiar, easily explained, widely used and implemented - 2. Easily extended to other regression problems - 3. Works pretty well, particularly for large n - 4. Can be improved by fancy stopping rules There are also several disadvantages: - 1. Computational compromise to avoid "all possible" model computation. The machine learning people call "all possible" a *greedy search*. - 2. Based on a model; if model is wrong, selection may be wrong. - 3. Based on correlations only. ## Lasso and regularization Regularization has been intensely studied on the interface between statistics and computer science. We describe the basic idea through the lasso, Tibshirani (1996), as applied in the context of linear regression. The method starts by assuming a model like $E(y|X=x) = \alpha + \beta'x$ and $Var(Y|X) = \sigma^2$. The variable selection problem is formulated as finding the elements of β that equal zero. Estimates are chosen to minimize $$\operatorname{arg\,min} \sum (y_i - \alpha - \beta' x_i)^2 \text{ subject to } \sum |\beta_j| < t$$ This is equivalent to minimizing $$\frac{1}{2n}\sum (y_i - \alpha - \beta' x_i)^2 + \lambda \sum |\beta_j|$$ which is just the usual least squares criterion with a penalty determined by λ for large coefficient estimates. If $\lambda = 0$ the lasso is the same as OLS; as λ increases, shorter vectors are preferred. Figure 2: How lasso, works, from Tibshirani, 1996. The elliptical contours are centered at the ols estimator $\hat{\beta}$ are of the residual sum of squares function $\{\beta | (\beta - \hat{\beta})'X'X(\beta - \hat{\beta}) = k\}$. There are many variations on this procedure, including application of it to other-than the linear model. Very high quality software in the package glmnet by Jerome Friedman, Trevor Hastie, Rob Tibshirani, is available in R. It computes estimates for a large number of values for λ at once. The "optimal" λ is selected by cross validation of some sort, although the validation procedure does not seem to be part of the glmnet package and you need to write your own. Figure 2 illustrates how the lasso works, in the special case of exactly p=2 predictors. The ellipses are contours of constant residual sum of squares, which is minimized at the point marked $\hat{\beta}$. As you move away from $\hat{\beta}$ the residual sum of squares increases, but all points on the same elliptical contour have the same value of RSS. The black square is the set of vectors β that satisfy the constraint $\sum |\beta_j| \leq \lambda$, and for given λ the estimator will be the point with smallest residual sum of squares, and so the lasso estimator will be the point in the black square, or clearly on the boundary of the black square unless $\hat{\beta} = 0$, that lies on the contour closest to $\hat{\beta}$. From the figure we can see that this will happen at one of the vertices of the black figure, at which one of the β_j is estimated to be exactly zero and the other is estimated to be non-zero. If the black figure is expanded, eventually the estimates of all the β_j will become non-zero, until for large enough λ the OLS estimate will be obtained. Thus for $\lambda = 0$ we get all estimates equal zero, and for very large λ we get the OLS estimate. ## Computing with glmnet An important property of the lasso procedure is that it is not invariant to linear transformations of the predictors, because of the penalty based on absolute value of β . As a result it is "usual" to scale the data before beginning the analysis, usually to correlation scale. The glmnet package uses a very fast computing algorithm to compute estimates for many values of the penalty λ simultaneously. The "answer" requires selecting a value of λ , and this is done using cross-validation. The most important function to use in the glmnet package is called cv.glmnet. The function glmnet is first run to get a sequence of λ -values that corresponding to getting one additional non-zero coefficient. Given this sequence of potential λ s, the program does n-fold cross-validation, with n=10 by default, to estimate error, so glmnet is run n times, each with a fraction (n-1)/n of the data, and prediction errors are accumulated on the remaining fold. Here is the call to cv.glmnet for the example: ``` > library(glmnet) > X <- as.matrix(ais0[, -1]) > Y <- ais0[, 1] > ans <- cv.glmnet(X[test,], Y[test], standardize=FALSE)</pre> ``` Unlike most other functions we have seen, glmnet does not have a formula interface and you must specify the response and predictors explicitly. The argument standardize=FALSE is used because the data are already standardized. The glmnet fit to all the (test) data is stored as ans\$glmnet.fit. We can get the variable trace using ``` > par(mfrow=c(1, 2)) > plot(ans$glmnet.fit, "norm", label=TRUE) > plot(ans$glmnet.fit, "lambda", label=TRUE) ``` This is a variable trace, just as with stepwise regression, but of course the trace is different. There is also a plot method for the cross-validation: # > plot(ans) The standard error bars on the plot are estimated using the cross-validation. The minimum value of λ is ``` > ans$lambda.min [1] 0.004810643 and a larger value of \lambda whose mean-square error is 1 SE larger is > ans$lambda.1se [1] 0.04486422 > coef(ans, s=ans$lambda.1se) 10 x 1 sparse Matrix of class "dgCMatrix" (Intercept) 0.006909257 logSSF -0.209076476 logWt 0.828613895 Sex -0.150802426 logHg logHt logRCC logHc logWCC logFerr Apparently, the default is to use the lambda.1se as the solution. Finally we can compute how well this does by applying the answer to the validation set. > rss <- function(pred){ error \leftarrow (Y - pred)^2 c(Construction = sqrt(sum(error[test])/length(test)), sqrt(sum(error[-test])/(length(Y)-length(test)))) } > rss.lassomin <- rss(predict(ans$glmnet.fit, s=ans$lambda.min, newx=X)) > rss.lasso1se <- rss(predict(ans$glmnet.fit, s=ans$lambda.1se, newx=X))</pre> > befit <- stepAIC(m0,scope=list(lower=~1,upper=f),trace=F,direction="forward")</pre> > rss.be <- rss(predict(befit,ais0))</pre> > rss.ols <- rss(predict(m1,ais0))</pre> > rbind(rss.lassomin, rss.lasso1se, rss.be, rss.ols) Construction Validation rss.lassomin 0.1669376 0.1984795 rss.lasso1se 0.1852774 0.2040184 rss.be 0.1670927 0.2012853 0.1657397 0.2005369 rss.ols ``` Here are some advantages of the lasso method. 1. Large n, large p the linear model will be approximately OK. - 2. p >> n can be handled with this method and the automatic procedure produces an answer. - 3. The argument family=c("gaussian", "binomial", "poisson", "multinomial", "cox") extends the method to continuous, binomial, and other problems. - 4. Enormous literature of extensions and modifications Here is a list of disadvantages. - 1. The initial "full" model specification must include the "true" model as a special case or else information is lost. That occurs in this example in which the possibility that effects might differ by Sex are not included and are therefore not discovered. - 2. The method is not invariant under rescaling columns of X or multiplying by a nonsingular matrix. The default is to scale all columns to have variance one, essentially working with a correlation matrix, but multiplication by a nonsingular matrix may completely change the results. - 3. The method depends only on correlation coefficients, not on the original data, so it is likely to be sensitive to any modeling problems. #### GlaucomaM ``` > show <- function(tt){</pre> print(tt) cat(paste("Misclassification rate =", round(1-sum(diag(tt))/sum(tt), 2),"\n")) invisible()} > data(GlaucomaM, package="ipred") > set.seed(123456) > const <- sample(1:198, 150) > library(randomForest) > b2 <- randomForest(Class ~., GlaucomaM, subset=const) > show(with(GlaucomaM, table(actual=Class[const], predicted=predict(b2)))) predicted actual glaucoma normal glaucoma 62 14 normal 13 61 Misclassification rate = 0.18 > show(with(GlaucomaM, table(actual=Class[-const], predicted=predict(b2, newdata=GlaucomaM[-const,])))) predicted actual glaucoma normal glaucoma 18 3 21 normal Misclassification rate = 0.15 > X <- as.matrix(GlaucomaM[, -63])</pre> > Y <- as.factor(GlaucomaM[, 63])</pre> ``` ``` > 12 <- cv.glmnet(X[const,], Y[const], family="binomial")</pre> > show(table(actual=Y[const], predicted=predict(12, newx=X[const,], type="class"))) predicted actual glaucoma normal glaucoma 64 12 normal 13 61 Misclassification rate = 0.17 > show(table(actual=Y[-const], predicted=predict(12, newx=X[-const,], type="class"))) predicted glaucoma normal actual glaucoma 18 normal 18 Misclassification rate = 0.22 ```