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8.1 IntroduCtIon

Recent years have brought about exciting new developments 
in computerized tomography. In particular, a novel, very 
promising approach to the creation of diagnostic techniques 
consists in combining different imaging modalities, in order 
to take advantage of their individual strengths. Perhaps the 
most successful example of such a combination is the ther-
moacoustic tomography (TAT) (also called photoacoustic 
tomography and optoacoustic tomography and abbreviated as 
TCT, PAT, or OAT) [1−8].

Major progress has been made recently in developing 
the mathematical foundations of TAT, including proving 
uniqueness of reconstruction, obtaining range descriptions 
for the relevant operators, deriving inversion formulas and 
algorithms, understanding solutions of incomplete data prob-
lems, stability of solutions, etc. One can find a survey of these 
results and extensive bibliography in Ref. [9]. In the present 
article, we concentrate on the recent advances in the inversion 
formulas and algorithms for TAT. Mathematical problems 
of the same type arise also in sonar, radar, and geophysics 
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90 Photoacoustic Imaging and Spectroscopy

applications (e.g., Refs. [10−12]). Discussion of some math-
ematical problems concerning TAT can also be found in the 
chapters written by D. Finch and Rakesh and by S. Patch.

While this text addresses the mathematics of TAT only, 
one can find extensive discussion of physics, engineering, and 
biological issues related to TAT in the recent surveys [4,5,8], 
textbook [7], as well as in other chapters of this volume.

8.2 thermoaCoustIC tomography

First, we give a brief description of TAT. The data acquisi-
tion starts with a short electromagnetic (EM) pulse being sent 
through the biological object under investigation (e.g., wom-
an’s breast in mammography).* A fraction of EM energy is 
absorbed at each location x inside the object, thus triggering 
thermoelastic expansion of the tissue and emergence of a pres-
sure wave p (x, t) (an ultrasound signal) that, in turn, is mea-
sured by transducers placed along some observation surface 
S surrounding (completely or partially) the object (Figure 8.1). 
The initial pressure p0 (x) = p(x, 0) is determined by the inten-
sity of the EM pulse (assumed to be known) and by the local 
properties of the tissue. It is known (e.g., Refs. [1,4,5,8,13]) that 
in the radiofrequency and visible light ranges, absorption of the 
EM energy by cancerous cells is several times stronger than by 
the healthy ones. Thus, knowledge of the initial pressure p0(x) 
would provide an efficient tool for early detection of cancer. 
Frequently, the ultrasound contrast is sufficiently small to jus-
tify the use of the constant sound speed approximation. To date, 
most work on TAT is based on this assumption. However, such 
an approximation is not always appropriate; some of the results 
described below, as well as in Refs. [9,14,15] aim towards the 
general case of a variable speed of sound.

* It has been argued that the radiofrequency and visible light ranges are 
most appropriate in TAT [8]. For the purpose of this text, no distinction is 
made between these cases.

Once the data p(x, t) has been measured on S  ×   + , one 
can attempt to recover from p(x, t) the initial value p0(x) of the 
pressure inside S (the thermoacoustic image).

8.3  mathematICal model of tat

Let us for notational convenience denote p0(x) (the image 
to be reconstructed) by f(x). In this section, we present a 
mathematical description of the relation between the func-
tions f(x) and p(x, t). We assume that the function f(x) is 
compactly supported in n (we allow the dimension to be 
arbitrary, albeit the most interesting cases for TAT are 
n  =  3 and n  =  2). At each point y of an observation surface 
S one places a point detector** that measures the value of the 
pressure p(y, t) at any moment t > 0. It is usually assumed 
that the surface S is closed (rather than, say, a cylinder or 
a plane***). It is also assumed that the object (and thus the 
support of f(x)) is completely surrounded by S. The latter 
assumption is crucial for the validity of most inversion for-
mulas; however, in some cases we will be able to abandon 
this requirement.

The mathematical model described below relies upon 
some physical assumptions on the measurement process, 
which we will not describe here. The reader can find such a 
discussion in Ref. [8].

We assume that the ultrasound speed νs(x) is known, e.g., 
through transmission ultrasound measurements [15]. Then, 
the pressure wave p(x, t) satisfies the following set of equa-
tions [13,23,24]:
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Now one needs to recover the initial value f(x) at t = 0 of the 
solution p(x, t) from the measured data g(y, t): = p(y, t), y∈S, t≥0. 
Incorporating this data, one rewrites Equation 8.1 as

 

p x p t x

p x f x

p x

tt x
n

t

= ∆ , ≥ , ∈
, = ,
, =

νs
2 0

0

0 0

( )

( ) ( )

( )



pp y t g y t y S( ) ( )

.

, = , , ∈ ×









 +

 
(8.2)

In other words, we would like to recover the initial value f(x) 
in Equation 8.2 from the knowledge of the lateral data g(y, t) 
(see Figure 8.2). At first glance, it seems that the data is insuf-
ficient for the reconstruction, i.e., for recovering the solution of 
the wave equation in a cylinder from the lateral values alone. 
However, this impression is incorrect, since there is additional 
information that the solution holds in the whole space, not just 

** Planar and linear detectors have been considered as well, see Refs.  
[16, 17] and further references in Ref. [9].

*** Reconstruction formulas for the planar and cylindrical cases are well 
known, see, e.g., Refs. [18–22].

fIgure 8.1 The TAT procedure. (Reproduced from Kuchment, 
P., and L. Kunyansky, Eur. J. Appl. Math. 19(2):191−224, 2008. 
With permission.)
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inside the cylinder S ×  + . To put it differently, if one solves 
not only the internal, but also the external problem for the 
wave equation with the data g on the cylinder S ×  + , then the 
solutions must have matching normal derivatives on S ×  + . In 
most cases, this additional information provides uniqueness 
of recovery of f(x) (see below, as well as Refs. [9,14,25−29] 
and references therein). It is also sometimes useful to notice 
that p can be extended as an even function of time and thus 
satisfies the wave equation for all values of t. Similarly, data 
g can be extended to an even function. This, in particular, 
enables one to apply Fourier transform in time.

An additional structure arises in this problem, if one 
assumes that the object under investigation is nearly homo-
geneous with respect to ultrasound: νs(x) = 1. In this constant 
speed case, there is an alternative way to describe the relation 
between the data g(y,t) ∈ S ×  +  and the unknown image f(x), 
x ∈ 3. The known Poisson–Kirchhoff formulas (see Ref. [30]  
Chapter VI, Section 13.2, Formula (15)) for the solution of 
Equation 8.1 with νs = 1 give

 p x t
t

t Rf x t( ) ( )( ), = ∂
∂

,( ),  (8.3)

where

 ( )( ) ( ) ( ),Rf x r f x ry dA y
y

, = +
| |=
∫

1

4 1π
 (8.4)

is the spherical mean operator applied to the function f(x), 
and dA is the surface area element on the unit sphere in  
3. Thus, the function g(y, t) for y  ∈ S and all t ≥ 0 essentially 
carries the same information as the spherical mean Rf(y, t) 
at all points (y, t) ∈ S ×  +  (see, e.g., Ref. [27]). One can, 
therefore, study the spherical mean operator R: f → Rf and, in 

particular, its restriction RS to the points y  ∈ S of the observa-
tion surface:

 R f x t f x ty dA y x S t
S

y

( ) ( ) ( ), = + , ∈ , ≥ .
| | =
∫

1

0 (8.5)

This explains why in many studies on TAT, the spherical 
mean operator has been used as the model. One needs to 
notice, though, that in the case of a nonconstant sound speed, 
the spherical mean interpretation (as well as any integral 
geometry approximation) is no longer valid, while the wave 
equation model still is.

8.4 unIQueness of reConstruCtIon

Uniqueness of reconstruction of a compactly supported (or 
sufficiently fast decaying) function f(x) from the data g col-
lected from a closed surface S is well known in the case of a 
constant sound speed (i.e., when the interpretation in terms 
of spherical mean operators is possible). One can find discus-
sion of such results in Refs. [9,14,25,27−29,31−34].

In the case of a variable sound speed, it is shown in Ref. [31, 
Theorem 4] that uniqueness of reconstruction also holds for a 
smoothly varying (positive) sound speed, if the function f(x) is 
supported inside the observation surface S. The proof uses the 
famous unique continuation theorem by D. Tataru [35].

We now present a recent simple uniqueness theorem that 
also allows a nonconstant sound speed νs(x) and does not 
require the function to be supported inside S. In order to do 
so, first we need to formulate some assumptions on νs(x) and 
the function f(x) to be reconstructed.

 1. Support of f x H ss n( ) ( )∈ , > /loc  1 2 is compact.
 2. The sound speed is smooth (a condition that can be 

reduced), strictly positive νs(x) > ν0 > 0, and such that 
νs(x) − 1 has compact support, i.e., νs(x) = 1 for large x.

 3. Consider the Hamiltonian system in  x
n
,ξ

2  with the 
Hamiltonian H x= | |(( ( ))/ )ν ξs

2 2 2 :

 

′ = ∂
∂

=

′ = − ∂
∂

= − ∇ | |

x
H

x

H

x
x

x

t

t

ξ
ν ξ

ξ ν ξ

s

s

2

2 21

2

( )

( ( ))

|| = , | = .













 = =t t

x0 0 0 0ξ ξ

.
 (8.6)

  The solutions of this system are called bicharacter-
istics and their projections into  x

n  are rays.
  We will assume that the nontrapping condition 

holds, i.e., that all rays (with ξ0  ≠ 0) tend to infinity 
when t → ∞.

Theorem 1. [14] Under the assumptions formulated above, 
compactly supported function f (x) is uniquely determined by 

t

y
S

x

fIgure 8.2 An illustration to Equation 8.2. (Reproduced from 
Kuchment, P., and L. Kunyansky, Eur. J. Appl. Math. 19(2):191−224, 
2008. With permission.)
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the data g. (No assumption of f being supported inside S is 
imposed.)

Uniqueness fails, however, if f does not decay sufficiently fast 
(see Ref. [25], where it is shown for the constant speed in 
which spaces Lp(d) of functions f(x) closed surfaces remain 
uniqueness sets).

8.5  reConstruCtIon In the Case of 
Constant sound speed: formulas, 
algorIthms, and examples

We consider here the case of a constant sound speed: νs(x) = 1. 
Then, one can work either with the wave equation or with the 
spherical mean operator model.

8.5.1 InversIon Formulas and Procedures

Consider the case of the observation surface S being a sphere. 
The first inversion procedures for this situation were obtained 
in Ref. [36] in 2D and in Ref. [37] in 3D by harmonic decom-
position of the measured data g and of the function f, and then 
by equating coefficients of the corresponding Fourier series 
(see also Ref. [9] for a brief description of this procedure). 
The two resulting series solutions are not quite analogous. 
Indeed, in Ref. [36], one had to divide the Hankel transform 
of the data by the Bessel functions that have infinitely many 
zeros, which would create instabilities during implementa-
tion. The 3D solution in Ref. [37] is free of this difficulty and 
can also be adopted for 2D. We will see a different type of 
series solutions later on in this section.

8.5.1.1 approximate Inversion formulas
The standard way of inverting Radon transform in tomo-
graphic applications is by using filtered backprojection-type 
formulas [20,38−41]. It combines a linear filtration of projec-
tions (either in Fourier domain, or by a convolution with a cer-
tain kernel) followed (or preceded) by a backprojection. In the 
case of the set of spheres centered on a closed surface (e.g., 
sphere) S, one expects such a formula to involve a filtration 
with respect to the radial variable and an integration over the 
set of spheres passing through the point x of interest. Albeit for 
quite a long time no such formula had been discovered, this 
did not prevent practitioners from reconstructions. The reason 
was that good approximate inversion formulas (parametrices) 
could be developed, followed by an optional iterative improve-
ment of the reconstruction [6,13,21,22,42−44]. Perhaps the 
most advanced approach of this kind was adopted by Popov 
and Sushko [42,43]. These authors have developed a set of 
“straightening” formulas that allow one to reconstruct from 
the spherical means an approximation to the regular Radon 
projections. The main idea is that for each (hyper)plane pass-
ing through the support of the function to be reconstructed, one 
builds a family of spheres with centers at the detectors’ loca-
tions and tangential to that plane. One such sphere is chosen 
for each point of the plane contained within the support. The 
integrals over these spheres are known, as they form a subset 

of projections g. An approximation to the integral of the func-
tion over the plane is then computed by integrating over these 
projections a functional (local in odd and nonlocal in even 
dimensions). When all the plane integrals are computed, the 
function is reconstructed by applying inversion formulas for 
the regular Radon transform. This procedure is not exact; how-
ever, as shown in Ref. [42], such an algorithm yields a param-
etrix. Namely, the difference between such an approximation 
and the original function f is described by a pseudodifferential 
operator of order −1 applied to f. In other words, reconstruction 
is accurate up to a smoothing operator. This result holds even if 
the measuring surface is not closed (but satisfies a “visibility” 
condition), which is important for applications in the problems 
with incomplete data.

8.5.1.2 exact filtered Backprojection formulas in 3d
The first set of exact inversion formulas of the filtered back-
projection-type for the spherical surface S was discovered in 
Ref. [29]. These formulas were obtained only in odd dimen-
sions (and then extended to even dimensions in Ref. [45]). 
Various versions of such formulas (different in terms of the 
order in which the filtration and backprojection steps are per-
formed) were developed.

To describe these formulas, let us assume that B is the 
unit ball, S = ∂B is the unit sphere in 3, and a function f(x) is 
supported inside S. The values of its spherical integrals g(z,r) 
with the centers on S are assumed to be known:

 g z r f z r r dA s r R f z r z S
S

( ) ( ) ( ) ( ), = + = , , ∈ .∫
S

s
2

2 24π  (8.7)

Some of the 3D inversion formulas of Ref. [29] are:
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A different set of explicit inversion formulas, which work in 
arbitrary dimensions, was found in Ref. [46]. In 3D case, the 
general expression derived in Ref. [46] simplifies to

 f y n z
t

d

dt

g z t

t
S t z y

( ) ( )
( )= ,



∫

=| − |

1

8

1
2π

div ddA z( ),  (8.10)

where n(z) is the vector of exterior normal to S. (In this 
expression, we eliminated the minus sign erroneously present 
in the original formula.) Equation 8.10 is equivalent to one of 
the 3D formulas derived earlier in Ref. [47].

Similar to the case of the standard “flat” Radon trans-
form, all these 3D inversion formulas are local, i.e., in order 
to reconstruct a value of the function at a certain point, one 
needs to know only the values of all the integrals over the 
spheres passing through an infinitesimally small neighbor-
hood of that point.
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It is worth noting that although Formulas 8.9 and 8.10 
yield identical results when applied to functions that belongs 
to the range of the spherical mean Radon transform, they are, 
in general, not equivalent, i.e., lead to different reconstruc-
tions when the data is outside of the range (for instance, due 
to errors). Another important fact about these reconstruction 
techniques is that, unfortunately, they do not yield correct 
reconstruction within the region surrounded by the detectors 
if the source is not contained within this region. Both these 
statements can be easily proven by the following example. 
Let us assume that the source function f(x) is constant (equal 
to 1) within the ball B(0,3) of radius 3 centered at the ori-
gin. In order to reconstruct the function within the unit ball, 
Formulas 8.10 and 8.9 use only integrals over spheres with the 
radius less or equal to 2, and centered at the points of the unit 
sphere. Obviously, all these spheres lie within the B(0,3), and 
thus the projections g(z,t) are equal to the areas of the corre-
sponding integration spheres, i.e., to 4πt2. By substituting this 
expression into Equation 8.9, we obtain

 f y
R z y

dA z
S

1

1 1
( ) ( )= −

−
.∫π

 

Function f1(y) defined by the above formula is harmonic in 
the interior of B, since the integrand is the free space Green’s 
function of the Laplace equation. Due to the symmetry of the 
geometry, f1(y) is radially symmetric, i.e., it depends only on |y|. 
Therefore, f1(y) = const for all y ∈ B\S. Let us compute f1 = 0:

 f
R R

dA z
S

1 0
1 1

4( ) ( )= − = − .∫π
 

Thus, f1(y) = −4 for all y ∈ B\S.
A similar computation with the use of Equation 8.10 

yields
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where we used the 3D Gauss formula. Both results f1 and 
f2 are incorrect (not equal to 1). Besides, they are different, 
which proves that Formulas 8.9 and 8.10 are not equivalent.

One of the important benefits of having exact inversion 
formulas is that often a rather straightforward discretization 
of such a formula yields an efficient and stable reconstruction 
algorithm. Such algorithms were developed in Ref. [48] using 
Equations 8.8 and 8.9, and in Ref. [46] utilizing Formula 8.10.

In the simplest case, when the image is reconstructed on 
a grid of size m  ×  m  ×  m from O (m2) projections, each of 
which contains values for O (m) integration spheres, all these 
algorithms have complexity of O (m5) operations. In practical 
terms, for m of order of a hundred, the reconstruction time is 
measured in hours. An example of the reconstruction in 3D 
using a method based on Formula 8.10, is shown in Figure 8.3. 
Reconstructions using Formulas 8.8 or 8.9 are quite similar in 
terms of stability, accuracy, and computation time.

8.5.1.3 exact filtered Backprojection formulas in 2d
Exact inversion formulas were obtained for even dimensions 
in Ref. [45]. Denoting by g, as before, the spherical inte-
grals (rather than averages) of f, the formulas in 2D look as 
follows:

 f y
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where B is a disk of radius R centered at the origin, and S = ∂B 
is its boundary.

Another 2D inversion formula [46] takes the following 
form (again, corrected for a sign):

 f y n z h z y z dl z
S

( ) ( ) ( )= − , −( ) ,∫
1

8π
div  (8.13)

fIgure 8.3 A mathematical phantom in 3D (left) and its reconstruction using inversion Formula 8.10.
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where
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and J0(t) and Y0(t) are the Bessel and Neumann functions 
of order 0. By analyzing the large argument asymptot-
ics of these functions, one can see [46] that the filtration 
operator given by Equation 8.14 is an analog of the Hilbert 
transform.

This reconstruction procedure can be rewritten in a form 
similar to Equations 8.11 or 8.12. Indeed, by slightly modify-
ing the original derivation of Equations 8.13 and 8.14, one 
can obtain a formula that would reconstruct a smoothed ver-
sion f̂ (x, ν) of f(x) defined by the formula

 
ˆ( )f x f, = ( ), < < ,− −

ν ξ ν
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F F1 0 1  

where F, F −1 are correspondingly the 2D Fourier and inverse 
Fourier transforms. The restriction of f̂ (x, v) to the interior 
of the disk B is recovered by the formula

 ˆ( ) ( ) ( )f y n z h z y z dl z
S

, = − , −( ) ,∫ν
π ν

1

8
div  (8.15)

where

 

h z t Y t J t g z t dt
R

ν λ λ( ) ( ) ( ) ( ), = ′ , ′ ′
+
∫ ∫










0

0

2

0









− ′ ,∫               ( ) ( ) (J t Y t g z t
R

0

0

2

0λ λ ′′ ′ .
















−)dt dλ λν

 

(8.16)

For 0  <  v  <  1, one can change the order of integration in 
Equation 8.16 to obtain

 h z t g z t K z t t dt
R
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Using Ref. [49, Formula 4.5, p. 211], the integral 
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The expression for the second integral in Equation 8.18 
is derived by interchanging t and t′, which results in the 
formula
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Finally, we substitute the above expression for Kv(z, t, t′) into 
Equation 8.17 and take the limit ν → 0, to arrive at the fol-
lowing formulas
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Similar to the one appearing in Equations 8.11 and 8.12, 
the filtration operator in Equation 8.19 also involves kernel 
1/(t′2 − t2). If desired, it can be rewritten in the form of a 
convolution, either by the change of variables t2

 → t, or by 
noticing that

 
2 1 1

2 2t t

t

t t

t

t t′ −
=

/ ′
+ ′

−
/ ′
− ′

.

This is important from the computational point of view, since 
it allows the reduction of the inner integral in Equation 8.19 
to the sum of two Hilbert transforms, computational algo-
rithms for which are well known.

All inversion formulas presented in this section require 
O (m3) operations to reconstruct an image on a grid of size 
m  ×  m from O (m) projections, each consisting of O (m) val-
ues of circular integrals. This coincides with the operation 
count required by a classical (nonaccelerated) filtered back-
projection algorithm in 2D.

Currently, it is not known whether Formula 8.19 is equiva-
lent to Equations 8.11 and 8.12. However, as shown in the 
previous section, this is not the case for the 3D versions of 
these formulas, and thus this seems unlikely in the two-di-
mensional case as well.

Finally, similar to the filtered backprojection formu-
las for the classical 2D Radon transform, the inversion 
Formulas 8.11, 8.12, and 8.19 are not local. In other words, 
in order to recover the value of f(x) for a fixed point x, all the 
values of g(z, t) have to be known.
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8.5.2 serIes solutIons For arbItrary GeometrIes

Explicit inversion formulas for closed surfaces S different 
from spheres have not yet been found,§ except the result of 
Ref. [14] described in the next section. There is, however, a 
different approach [50] that theoretically works for any closed 
S and that is practically useful when the surface is the bound-
ary of a region, in which the spectrum and eigenfunctions of 
the Dirichlet Laplacian are known (or could be effectively 
approximated numerically).

Let λk
2  (where λk > 0) and uk(x) be the eigenvalues and nor-

malized eigenfunctions of the Dirichlet Laplacian −∆D on the 
interior Ω of the observation surface S:

 

∆ + = , ∈ , ⊆ ,
= , ∈ = ∂ ,

u x u x x

u x x S

u

k k k
n

k

( ) ( )

( )

λ2 0

0

Ω Ω
Ω


kk ku x dx
2

2 2
1≡ = .∫

Ω

( )

 (8.20)

As before, we would like to reconstruct a compactly  supported 
function f(x) from the known values of its spherical integrals 
g(z, r) (Equation 8.7).

According to Ref. [50], if f(x) is represented as the sum of 
the Fourier series

 f x u x
m

k k( ) ( )= ,
=

∞

∑
0

α  (8.21)

the Fourier coefficients αk can be reconstructed as follows:

 α λ
k k k

I z
n

u z dA z= , ∂
∂∂Ω

∫ ( ) ( ) ( ), (8.22)

where

 I z g z r r drk k
( ) ( ) ( ), = , ,

+
∫λ λ


Φ

and Φλk
(|x − z|) is a free-space rotationally invariant Green’s 

function of the Helmholtz Equation 8.20.
Formula 8.22 is obtained by substituting the Helmholtz 

representation for uk(x)

 u x x z
n

u z ds z x
k kk
( ) ( ) ( )= −( ) ∂

∂
∈ ,

∂
∫ Φ Ω
Ω

λ  (8.23)

into the expression for the projections g(z,t).
This eigenfunction expansion approach requires knowl-

edge of the spectrum and eigenfunctions of the Dirichlet 
Laplacian, which is available only for some simple domains. 
However, when this information is available, the method 
yields reliable, robust, and, in some cases, fast reconstruction. 
For example, as it was shown in Ref. [50], for the cubic obser-
vation surface S, one can compute reconstructions thousands 

of times faster than by methods based on explicit inversion 
formulas of backprojection type discussed above. The opera-
tion count for such an algorithm is O (m3 log m), as compared 
to O (m5) for the explicit inversion formulas.

Another advantage of the series technique is its ability 
to “tune out” the signal coming from outside of S. In other 
words, unlike the explicit inversion formulas discussed in the 
previous sections, the present method enables one to recon-
struct the values of f(x) for all x lying inside S even in the 
presence of the sources outside. We illustrate this property 
by the reconstruction shown in Figure 8.4. (The dashed line 
in the left figure represents surface S, i.e., the location of the 
detectors.)

8.6  reConstruCtIon In the Case 
of VarIaBle sound speed

In this section, we consider a more general case of the vari-
able sound speed νs(x). Our analysis is valid under previously 
imposed conditions on this speed, namely, that νs(x) is suf-
ficiently smooth, strictly positive, nontrapping, and νs(x)−1 is 
compactly supported.

Consider the Hilbert space H L x dx= , −2 2( ( ) )Ω νs
, i.e., the 

weighted L2 space with the weight νs
−2 ( )x . In this space, the 

naturally defined operator

 A x= − ∆νs
2 ( )

in Ω with zero Dirichlet conditions on S is self-adjoint, posi-
tive, and has discrete spectrum { }λk

2 (λk > 0) with eigenfunc-
tions ψk (x) ∈ H.

We also denote by E the operator of harmonic extension 
of functions from S to Ω. For example, for a function φ on 
S, the function Eφ is harmonic inside Ω and coincides with 
φ on S.

Since we are dealing with the unobstructed wave propaga-
tion in the whole space (the surface S is not truly a boundary, 
but just an observation surface), and since we assumed that 
the sound speed is nontrapping and constant at infinity, the 
local energy decay type estimates of Refs. [51,52] (see also 
Ref. [53, Theorem 2.104]) apply. They also lead to the follow-
ing reconstruction procedures:

Theorem 2. [14]

 1. The function f(x) in Equation 8.2 can be recon-
structed inside Ω as follows:

 f x E g A A E g x d
t tt

( ) sin( ) ( )( )/ /= ( ) − ,
=

∞
−∫0

0

1 2 1 2τ τ ττ.
  (8.24)

 2. Function f(x) can be reconstructed inside Ω from 
the data g in Equation 8.2, as the following L2(Ω)-
convergent series:

 f x f x
k

k k( ) ( )= ,∑ ψ  (8.25)
§ Planar and cylindrical observation surfaces, for which such formulas are 

known [18–22], are not closed.
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  where the Fourier coefficients f k can be recovered 
using one of the following formulas:

 

f g t g t dt

f

k k k k k k

k k

= − ′′ ,

=

− −
∞

∫λ λ λ

λ

2 3

0
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−− −
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= −

∫2 2

0
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0g t g t dt

f

k k k k

k k

( ) cos( ) ( )λ λ

λ
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00

1

0

∞
−

∞

∫ ∫ ∫= −

×

sin( ) ( ) sin( )

    

λ λ λk k k

S

kt g t dt t

gg x t
n

x dxdtk( ) ( ),
∂
∂

,



















ψ

 (8.26)

  where

 g t g x t
n

x dxk

S

k( ) ( ) ( ) ,= ,
∂
∂∫
ψ

  and n denotes the external normal to S.

Remark 3. The function E(gtt) does not belong to the 
domain of the operator A. The formula 8.24, however, still 
makes sense, since the operator A−1/2 sin(τA1/2) is bounded 
in L2.

This theorem in the particular case of the constant sound 
speed, implies the eigenfunction expansion procedure of Ref. 
[50] described in the previous section. However, unlike Ref. 
[50], it also applies to the variable speed situation and it does 
not require knowledge of a whole space Green’s function. 
Similar to the method of Ref. [50] discussed in the preceding 
section, this procedure yields correct reconstruction inside 
the domain, even if a part of the source lies outside.

8.7  partIal data. ”VIsIBle” and 
“InVIsIBle” sIngularItIes

One can find a more detailed discussion of this issue for TAT 
in Ref. [9,44] and in the chapter [6] in this volume. Here we 
provide only a brief summary.

Uniqueness of reconstruction does not necessarily mean 
the possibility of practical reconstruction, since the recon-
struction procedure can sometimes be unstable. This is true, 
for instance, in problems of electrical impedance tomogra-
phy, and in incomplete data problems of x-ray tomography 
and TAT [20,34,41,55].

Microlocal analysis done in Refs. [10,56] (see also Ref. 
[57]) shows which parts of the wave front of a function f can be 
recovered from its partial x-ray or TAT data (see also Ref. [44] 
for a practical discussion). We describe this result in an impre-
cise form (see Ref. [10] for precise formulation), restricted to 
the case of jump singularities (tissue interfaces) only.

According to Refs. [10,56], for such singularities a part of 
the interface is stably recoverable (dubbed “visible” or “audi-
ble”), if for each point of the interface there exists a sphere cen-
tered at S and tangent to the interface at this point. Otherwise, 
the interface will be blurred away (even if there is a uniqueness 
of reconstruction theorem). Indeed, if all spheres of integration 
are transversal to the interface, the integration smoothes the 
singularity, and thus reconstruction of this interface becomes 
unstable. Figure 8.5 shows an example of a reconstruction 
from incomplete spherical mean data. The simulated transduc-
ers in this experiment were located along a 180° circular arc 
(the left half of a large circle surrounding the squares). In this 
figure, the sides of the squares that are not touched tangentially 
by circles centered on S are noticeably blurred; any kind of 
deblurring technique would not be stable in this context.

8.8 range CondItIons

This paper would not be complete without mention-
ing the intimate relationship of inversion problems with 
range conditions. Indeed, as it has already been men-
tioned, recovery of f from the data g is impossible, if 
considered as an inverse problem for the wave equation 
problem inside the cylinder S  ×   + . The possibility of 
inversion depends upon the fact that the solution of the 
wave equation lives in the whole space, and S is just the 
observation surface, rather than a true boundary. In other 
words, the data g(x, t) comes from a very small (infinite 
codimension) subspace in any natural function space on 
the lateral boundary S  ×   + . Thus, range conditions must 

fIgure 8.4 The phantom shown on the left includes several balls located outside the square acquisition surface S, which does not influ-
ence the reconstruction inside S (right).
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play a significant role. Indeed, they lead the authors of  
Ref. [14] to their results. We thus provide here a brief sketch 
of range results, following essentially the corresponding 
section of Ref. [9].

As has just been mentioned, the ranges of Radon-type 
transforms, including the spherical mean operator, are usu-
ally of infinite codimension in natural function spaces (in 
other words, ideal data should satisfy infinitely many consis-
tency conditions). Information about the range is important 
for many theoretical and practical purposes (reconstruc-
tion algorithms, error corrections, incomplete data comple-
tion, etc.), and has attracted a lot of attention (e.g., Refs. 
[20,34,38−41,55,57−65]).

For example, functions g from the range of the standard 
Radon transform

 f x g s f x dx
x s

( ) ( ) ( )→ , = , | |= ,
⋅ =
∫ω ω
ω

1

satisfy two types of conditions:

 1. Evenness: g(−s,−ω) = g(s, ω)
 2. Moment conditions: for any integer k≥0, the kth 

moment

 G s g s dsk
k( ) ( )ω ω= ,

−∞

∞

∫

  extends from the unit circle of vectors ω to a homo-
geneous polynomial of degree k in ω.

Although for the Radon transform the evenness condition 
seems to be “trivial”, while the moment conditions seem to 
be the most important, this perception is misleading. Indeed, 
for more general transforms of Radon type it is often easier 
to find analogs of the moment conditions, while counter-
parts of the evenness conditions could be elusive (see Refs. 
[20,34,41,61,62,64]). This is exactly what happens with the 
spherical mean transform RS.

An analog of the moment conditions was first presented 
implicitly in Refs. [27,66,67] and explicitly formulated as 
such in Refs. [68,69]:

Moment conditions on data g(x,r) = RSf(x,r) in n are: for 
any integer k ≥ 0, the moment

 M x r g x r dr x Sk
k n( ) ( )= , , ∈

∞
+ −∫

0

2 1

can be extended from S to a (nonhomogeneous) polynomial 
Qk(x) of degree at most 2k.

These conditions are incomplete, and infinitely many others, 
which play the role of an analog of evenness, need to be added.

Complete range description for RS when S is a sphere in 
2D was found in Ref. [70] and then in odd dimensions in Ref. 
[71]. They were then extended to any dimension and pro-
vided several interpretations in Ref. [26]. These conditions, 
which happen to be intimately related to partial differential 
equations (PDEs) and spectral theory, are described below.

Let B be the unit ball in n, S = ∂B the unit sphere, and C 
the cylinder B × [0,2] (see Figure 8.6).

Consider the spherical mean operator RS:

 RS  f(x, t) = G(x,t) =  f x ty dA y
y

( ) ( )+ .
| |=
∫

1

 

If G(x, t) is defined by the same formula for all x  ∈ n, then 
it satisfies the Darboux (Euler–Poisson–Darboux) equation 
[30,72,73]

 Gtt + (n − 1)t−1Gt  = ∆xG.

Inside the cylinder C, G(x, t) vanishes when t ≥ 2 (since the 
spheres of integration do not intersect the support of the 
function when t ≥ 2).

Theorem 4. [26] The following four statements are equiva-
lent for any function g C∈ ∞

0 (S × [0,2]), where S is a sphere:

 1. Function g is representable as RSf for some
f C B∈ ∞

0 ( ) .
 2. (a) The moment conditions are satisfied.
  (b)  The solution G(x,  t) of the interior Darboux 

problem satisfies the condition.

fIgure 8.5 Effect of incomplete data: the phantom (left) and its reconstruction from incomplete data. (Reproduced from Kuchment, P., 
and L. Kunyansky, Eur. J. Appl. Math. 19(2):191−224, 2008. With permission.)

59912_C008.indd   97 12/9/08   8:59:16 PM



98 Photoacoustic Imaging and Spectroscopy

 lim ( ) ( )
t

B

G

t
x t x dx

→ ∫
∂
∂

, =
0

0φ  

    for any eigenfunction φ(x) of the Dirichlet 
Laplacian in B.

 3. (a) The moment conditions are satisfied.
 (b)  Let −λ2 be an eigenvalue of Dirichle Laplacian in 

B and ψλ the corresponding eigenfunction. Then 
the following orthogonality condition is satisfied:

 
S

n
ng x t x j t t dxdt

× ,
/ −

−∫ , ∂ = .
[ ]

( ) ( ) ( )
0 2

2 1
1 0ν λψ λ  (8.27)

    Here jp(z) = cp(Jp(z)/zp) is the so-called spherical 
Bessel function.

 4. (a) The moment conditions are satisfied.

 (b)  Let ˆ( ) ( ) ( )g x g x t j t t dt
n

n, = ∫ , / −
−λ λ2 1

1 . Then, for 
any m∈, the mth spherical harmonic term ĝ

m

(x,  λ) of ĝ (x,  λ) vanishes at nonzero zeros of 
Bessel function Jm + n/2−1(λ).

One can make several important comments concerning 
this result (see Ref. [26] for a detailed discussion). In all of 
the remarks below, except the third one, the observation sur-
face S is assumed to be a sphere.

 1. If the dimension n is odd, then conditions (b) alone 
suffice for the complete range description, and 
thus they imply the moment conditions as well. (A 
similar earlier result was established for a related 
transform in Ref. [71].) It is not clear at the moment 
whether this holds true in even dimensions.

 2. The range descriptions for RS work in Sobolev 
scale, i.e., they describe the range of the operator

R H B H SS
s s n: ×+ − / +
comp comp( ) ( )( ) 1 2 . (This uses a 

recent work by Palamodov [74]). Notice that in this 
result, it is assumed that the function f vanishes in a 
neighborhood of S, while in the previous theorem it 
was allowed for the support of f to reach all the way 
to the sphere S.

 3. If S is not a sphere, but the boundary of a bounded 
domain, the range conditions 2 and 3 of the previous 
Theorem are still necessary for the data g to belong 
to the range of RS. They, however, might no longer 
suffice for g to belong to the range.

 4. A different wave equation approach to the range 
descriptions can be found in Ref. [71].

8.9 ConCludIng remarks

8.9.1 unIqueness

As already mentioned, the uniqueness questions relevant 
for TAT applications are essentially resolved. However, the 
mathematical understanding of the uniqueness problem for 
the restricted spherical mean operators RS is still unsatisfac-
tory and open-problems abound [9,27]. For instance, very 
little is known for the case of functions without compact sup-
port. The main known result is of Ref. [25], which describes 
for which values of 1 ≤ p ≤ ∞ the uniqueness result still holds:

Theorem 5. [25] Let S be the boundary of a bounded dom-
ain in n and f  ∈ Lp(n) such that RSf ≡ 0. If p ≤ 2n/ (n−1), then 
f ≡ 0 (and thus S is the injectivity set for this space). This fails 
for any p > 2n/(n − 1).

The three- and higher-dimensional uniqueness prob-
lem for nonclosed observation surface S is also still open 
[9,27].

8.9.2 InversIon

Albeit closed-form (backprojection type) inversion formulas 
are available now for the cases of S being a plane (and object 
on one side from it), cylinder, and a sphere, there is still some 
mystery surrounding this issue. For instance, it would be 
interesting to understand whether (closed form, rather than 
series expansion) backprojection-type inversion formulas 
could be written for nonspherical observation surfaces S  
and/or in the presence of a nonuniform background vs(x). The 
results presented in Section 8.6 seem to be the first step in 
this direction.

The I. Gelfand school of integral geometry has developed 
a powerful technique of the so-called κ operator, which pro-
vides a general approach to inversion and range descriptions 
for transforms of Radon type [39,58]. In particular, it has 
been applied to the case of integration over various collec-
tions (“complexes”) of spheres in Refs. [39,75]. This consid-
eration seems to suggest that one should not expect explicit 
closed-form inversion formulas for RS when S is a sphere. 
However, such formulas were discovered in Refs. [29,45,46]. 

fIgure 8.6 An illustration to the range description. (Reproduced 
from Kuchment, P., and L. Kunyansky, Eur. J. Appl. Math. 
19(2):191−224, 2008. With permission.)
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This apparent controversy (still short of contradiction) has 
not yet been resolved completely.

B. Rubin has recently discovered an alternative interesting 
approach to inversion formulas of the type of Equations 8.8 
and 8.9 for the case when S is a sphere. It relies upon the idea 
of regarding the spherical mean operator as a member of a 
broader family of operators [76].

In 3D, if the sound speed is constant, the Huygens’ prin-
ciple applies, i.e., the pressure p(t, x) inside S becomes equal 
to zero for any time T larger than the time required for 
sound to cross the domain. Thus, imposing zero conditions 
on p(t,  x) and pt(t, x) at t = T, and solving the wave Equation 
8.2 back in time with the measured data g as the boundary 
values, one recovers at t = 0 the source f(x). This method, 
usually called time reversal, has been implemented in 
Ref. [77]. Although in even dimensions or in the presence 
of sound speed variations, Huygens’ principle does not 
apply, one can find good approximate solutions by a similar 
approach [78]. Properties of the time reversal method and 
its comparison with other reconstruction methods of TAT 
are discussed in Ref. [78].

A different approach to TAT inversion is suggested in Ref. 
[79]. It is based on using not only the measured data g on 
S  ×   + , but also the normal derivative of the pressure p on S. 
Since this normal derivative is not measured, finding it would 
require solving the exterior problem first and deriving the 
normal derivative from there. Feasibility and competitive-
ness of such a method for TAT is not clear at the moment.

8.9.3 stabIlIty

Stability of inversion when S is a sphere surrounding the sup-
port of f(x) is the same as for the standard Radon transform, 
as shown in the results of Refs. [9,26,74]. However, if the sup-
port reaches outside, in spite of Theorem 1 that guarantees 
uniqueness of reconstruction, stability for some parts of f(x) 
lying outside S no longer holds (see Refs. [9,10,26,56] for 
details).

8.9.4 ranGe

The range conditions 2 and 3 of Theorem 4 are necessary 
also for nonspherical closed surfaces S and for functions with 
support outside S. They, however, are not expected to be suf-
ficient, since the arising instabilities indicate that one might 
expect nonclosed ranges in some cases.

Some of the range conditions can be also described in the 
case of a variable sound speed [78].
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