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Abstract. Our goal is to solve the inverse source problem of thermo- and photoacoustic tomog-
raphy, with data registered on an open surface partially surrounding the source of acoustic waves.
The proposed modified time reversal algorithm recovers the source term up to an infinitely smooth
error term. Similarly to [1], numerical simulations show that the error term is quite small in practi-
cal terms. Unlike the latter method, the present technique is applicable in the presence of a known
variable speed of sound. It is also significantly more efficient from a computational standpoint. It
can be implemented using either standard finite difference techniques or through methods based on
separation of variables, that for special geometries yield extremely fast image reconstruction. We
illustrate our results with numerical simulations in 2 and 3 spatial dimensions.
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1. Introduction

We consider the inverse source problem for the free-space wave equation. This problem plays a
central role in thermo- and photoacoustic tomography (TAT/PAT) [2–4], where the acoustic wave
propagation is initiated by illuminating a region of interest by a short laser or microwave pulse.
The energy absorbed by the biological tissues produces an instantaneous jump in the pressure
due to so-called thermoelastic expansion. Customarily, detectors (e.g. hydrophones, transducers,
optical interferometers) are placed on a surface completely or partially surrounding the region of
interest. They measure the pressure of the outgoing acoustic wave; the goal is to recover the initial
pressure from the measurements. A mathematically equivalent problem arises also in several other
coupled-physics modalities (see, for example, [5–7]).

The inverse source problem for the wave equation in the free space is well understood by now
in the case when the measuring surface entirely envelops the region of interest. However, in many
application (of which arguably the most important is the breast imaging), the object (or body part)
of interest can be surrounded by the detectors only partially. While the theoretical foundations
of this problem (injectivity, stability, etc.) have been developed for this case, practical image re-
construction algorithms are a work in progress. In this paper we develop an image reconstruction
procedure that recovers the initial pressure up to an infinitely smooth error term. In our numerical
simulations the latter error has been quite small. Our analysis is microlocal in nature, similarly
to that in our previous work [1] where the source is reconstructed by solving the exterior problem
and by finding the Radon projections of that solution. However, the present approach is based
on a different principle (a modified time reversal); unlike the previous technique it works with a
non-uniform (but known) speed of sound, and, for general acquisition surfaces, it is much more
efficient computationally.

2. Formulation of the problem

The forward problem of TAT/PAT is frequently modeled (see e.g. [8]) by the Cauchy problem
for the standard wave equation in Rd, d ≥ 2:

(1) c2(x)∆u(t, x) = utt(t, x), t > 0, x ∈ Rd,
1
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with the initial condition

(2) u(0, x) = f(x), ut(0, x) = 0,

where u(t, x) represents the (excess) acoustic pressure in the tissues, c(x) is the speed of sound,
and f(x) is the initial pressure one seeks to reconstruct eventually. The function f is assumed to
be supported within a bounded, closed set Ω0 ⊂ Rd with non-empty interior. We will assume that
c ∈ C∞(Rd) and that c(x) is constant in Rd \Ω0. Ideally, one would take the measurements g(t, z)
defined as values of u(t, z) on the boundary ∂Ω of a larger open and bounded set Ω ⊃ Ω0:

(3) g(t, z) ≡ u(t, z), z ∈ ∂Ω, t ∈ (0,∞).

We will call such measurements full or complete. In what follows we assume that the set Ω is convex,
has a smooth boundary ∂Ω, and that f belongs to the Sobolev space Hk(Rd) with supp f ⊂ Ω0 for
some known non-negative integer k. The Sobolev space {f ∈ Hk(Rd) : supp f ⊂ Ω0} is isomorphic
to the Sobolev space Hk

0 (Ω0). The operator mapping f(x) into boundary data g(t, z) is continuous
from Hk

0 (Ω0) into Hk((0,∞)× ∂Ω) [9].
Let us note, for future use, that if one extends u(t, x) and g(t, z) in an even fashion in t to u∗(t, x)

and g∗(t, z) as follows

u∗(t, x) = u∗(−t, x) = u(t, x), (t, x) ∈ [0,+∞)× Ω,

g∗(t, z) = g∗(−t, z) = g(t, z), (t, z) ∈ [0,+∞)× ∂Ω,
(4)

then u∗(t, x) solves wave equation in R×Ω and satisfies the boundary condition u∗(t, z) = g∗(t, z),
(t, z) ∈ R× ∂Ω.

2.1. Time reversal with full data. A useful theoretical and practical tool for recovering f(x) from
the boundary data g (assuming c(x) is known) is time reversal. Let us define this procedure in a
generalized way as follows. First, define an even C∞(R) cut-off function 0 ≤ κ(s) ≤ 1 such that
κ(s) = 1 for s ∈ [−1, 1] and κ(s) = 0 for |s| > m > 1 where m is a fixed number. Now, given fixed
parameters T > 0 and T1 > 0, and some boundary conditions h(t, z) defined on (−T1,mT ) × ∂Ω,
one solves the following initial/boundary value problem backwards in time

(5)

 c2(x)∆xw(t, x) = wtt(t, x), (t, x) ∈ Q ≡ (−T1,mT )× Ω,
w(mT, x) = 0, wt(mT, x) = 0, x ∈ Ω,
w(t, z) = κ(Tt)h(t, z), (t, z) ∈ (−T1,mT )× ∂Ω.

This procedure defines a linear operator ΛT : h 7−→ w. There is a significant freedom in choosing
T1. Below we will consider both the case when T1 is a fraction of T, and the case of T1 being large.
Furthermore we note that the extension of w by zero for all t > mT preserves the wave equation
in the space time cylinder (−T1,∞)× Ω. In particular, if T1 > mT , this extension will be implied
and we consider w to be defined in (−T1, T1)× Ω.

Let us define a restriction operator R that restricts a function of (t, x) ∈ R×Ω to its value at
t = 0, i.e. R : w(t, x) 7−→ w(0, x). We note that the composition RΛT is well-defined. Indeed,
the operator ΛT is a continuous operator from Hk((−T1,mT ) × ∂Ω) into C([−T1,mT ], Hk(Ω)) ∩
Ck([−T1,mT ], L2(Ω)), for k = 0, 1, 2, ... (see [10] for k ≥ 1 and [11] for k = 0) and hence, R :
C([−T1,mT ], Hk(Ω))→ Hk(Ω) is well-defined, as stated above.

Our version of the time reversal is a modification of the algorithm proposed and analyzed in [12].
The approach to this technique proposed in [9] initializes the time-reversal at t = T by the harmonic
extension of the boundary data (and its time derivative). This reduces the error and eliminates the
necessity of the smooth cut-off. However, for the purposes of the present work the smooth cut-off
proposed in [12] is preferable.

The standard time-reversal algorithm with full data is obtained when T1 = 0 and boundary
condition h(t, z) is chosen to equal g(t, z). Then, if c(x) satisfies the non-trapping condition (defined
below) and T is sufficiently large, the time-reversed solution w(t, x) approximates u(t, x) within
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Q, and, in particular w(0, x) ≡ [RΛT g](x) coincides with f(x) up to an infinitely smooth additive
error term.

Moreover, in the limit T →∞ the error term vanishes and the reconstruction becomes exact [12].
In addition, in the particular case of d being odd and the speed of sound being constant (i.e.
c(x) ≡ c0), the reconstruction is exact for any T ≥ c0 diam(Ω), because of Huygens’ principle. In
both cases

(6) f(x) = w(0, x) = [RΛT g](x),

and the time-reversed solution w coincides with the evenly extended exact solution u∗:

(7) w(t, x) ≡ [ΛT g
∗](t, x) = u∗(t, x), (t, x) ∈ Q.

A variety of numerical algorithms can be utilized to solve the time reversal problem numerically.
In addition to finite difference methods [13–15], under certain conditions one can also apply tech-
niques based on eigenfunction expansions [8, 16] and even (in the presence of certain symmetries)
explicit formulas similar to the method of images [17].

2.2. Reduced data problem. In this paper we consider the practically important case of measure-
ments restricted to a subset Γ of ∂Ω; we will call such data ”reduced” and denote it by greduced(t, z):

(8) greduced(t, z) ≡
{
g(t, z) = u(t, z), z ∈ Γ ⊂ ∂Ω,

0, z ∈ ∂Ω\Γ, t ∈ [0,mT ].

We will denote by A the operator mapping f(x) into reduced boundary data greduced(t, z)

A : f 7→ greduced.

Our goal is to solve the inverse source problem with reduced data, i.e. to find f(x) given c(x) and
greduced(t, z).

2.2.1. Theoretical foundations. Solvability and stability of the reduced data problem have been
established under the so-called visibility condition. This condition can be formulated in terms of
either bicharacteristics or geometric rays for the Cauchy problem (1), (2) as follows. Since the
operator is of order 2, to each (x0, η0) ∈ T ∗Ω0\0 there are two null bicharacteristics, denoted by
γx0,η0,± which are curves in T ∗Rd+1. They are the unique solutions to the following two initial
value problems:

(9)

{
dt
ds = τ, dx

ds = −c2(x)η, dτ
ds = 0, dη

ds = |η|2c(x)∇c(x),
t(0) = 0, x(0) = x0, τ(0) = ±c(x0)|η0|, η(0) = η0.

Both solutions satisfy the characteristic equation τ2(s) − c2(x(s))|η(s)|2 = 0 for all s, since this
relation holds for s = 0 and differentiating with respect to s gives

2τ
dτ

ds
−2c(x)|η|2

〈
∇c(x),

dx

ds

〉
−2c2(x)

〈
η,
dη

ds

〉
= 2c3(x)|η|2 〈∇c(x), η〉−2c3(x)|η|2 〈η,∇c(x)〉 = 0 .

Here 〈·, ·〉 denotes the scalar product in Rd. Note that the solutions for τ are τ±(s) = ±c(x0)|η0|
and hence t±(s) = ±c(x0)|η0|s. This allows us to use t as the parameter in each solution and write
the two null bicharacteristics as

(10) γx0,η0,±(t) = (t, x±(t),±c(x0)|η0|, η±(t))

where x±(t) and η±(t) are solutions to the initial value problem

(11) ẋ±(t) = ∓c(x±(t))
η±(t)

|η±(t)|
, η̇±(t) = ±∇c(x±(t))|η±(t)|, x(0) = x0, η(0) = η0.

The projections of the null bicharacteristics into the phase space are characteristics and denoted
by βx0,η0,±(t), i.e. βx0,η0,±(t) = (t, x±(t)). Observe that βx0,η0,+ = βx0,−η0,−.
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We make the following observations.
(i) For any positive K > 0 we have βx0,η0,± = βx0,Kη0,±.

Proof. One easily checks that if the pair (x±(t), η±(t)) solves (11), the pair (x±(t),Kη±(t)) solves
(11) with the last equation replaced by η(0) = Kη0. �

(ii) The two ODE systems (11) admit a unique solution for all t ∈ R.

Proof. Compute |ẋ(t)| = c(x(t)). This gives a bound on the derivative of x over any finite time
interval. Hence, there cannot be a blow-up |x(t)| → ∞ at any finite time. Furthermore, since
τ(t) = τ(0) = ±c(x0)|η0| for all t, we have |η(t)| = c(x0)|η0| for all t. We conclude that η(t)
remains bounded for all t. �

Note that in any region where the speed of sound is constant (say equal to c0) the system (11)
can be solved explicitly and gives

γx0,η0,±(t) = (t, x0 ∓ c0tη0/|η0|,±c0|η0|, η0) and γx0,−η0,±(t) = (t, x0 ± c0tη0/|η0|,±c0|η0|,−η0)

for t ∈ R. In particular, since we assumed that the speed of sound c(x) is constant outside of Ω0,
in the compliment Rd \ Ω0 the characteristics are straight lines.

The speed of sound satisfies the non-trapping condition if all characteristics βx0,η0,± with
(x0, η0) ∈ T ∗Ω0 satisfy limt→∞ |x(t)| =∞.

The solvability and stability of the inverse source problem with reduced data has been established
under the following

Visibility condition. [9, 18] For the support Ω0 of f and the measuring surface Γ, there exists
number T > 0 such that for each (x, η) ∈ T ∗Ω0 either βx,η,+ or βx,η,− (or both) intersect Γ transver-
sally for some t ∈ (0, T ).

Moreover, this condition is necessary for the stable reconstruction of f ; violating this condition
makes the problem strongly ill-posed [9, 19].

2.2.2. Known computational techniques. We are interested in efficient computational procedures for
recovering f (or a close approximation to f) from greduced, assuming that the Visibility Condition
is satisfied. Let us briefly review what techniques for solving this problem are currently known.
The most straightforward approach is to apply time-reversal operator RΛT to data greduced thus
obtaining a (very) crude approximation to f . In fact, as shown in [9], the error operator K ≡
I − RΛTA is a pseudodifferential operator (ψDO, see [20]) of order 0 with the principal symbol
bounded between 0 and 1/2. Then, one can try to approximate f by the Neumann series

f ≈
∞∑
m=0

KmRΛT g
reduced.

These series converge in a microlocal sense, meaning that f−
∑∞

m=0K
mRΛT g

reduced is an infinitely
smooth function [15]. The convergence of these series in norm has not yet been proven, although
numerical experiments in the latter work have shown fast convergence.

Alternatively, one can obtain a crude approximation by defining and applying to the data the
adjoint operator A∗ [21]. As a result, one ends up with the following integral equation with respect
to f :

[A∗Af ](x) = b(x), where b(x) ≡
[
A∗greduced

]
(x), x ∈ Ω0.

Since the A∗A is a symmetric positive definite operator, the above equation can be solved by the
conjugate gradient method [22, 23]. If there is a need to introduce a regularization, one can instead
minimize

‖A∗Af − b‖+ penalty terms,
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where there is a choice of the norm || · || and penalty terms (such as, e.g., total-variation or L2 norm
of the solution) that promote needed features in the reconstructed approximation. A comparative
analysis of several methods of this nature is given in [21] (see also [24]).

In spite of the obvious advantages of iterative methods, they are also relatively slow and rely on
choices of regularization parameters and stopping criteria that are not always clear. Several non-
iterative methods for the problem under consideration exist for the case of constant speed of sound.
In particular, in [25] an explicit closed-form solution is found for the problem of recovering the
Radon projections of f from greduced. Unfortunately, this technique works only under a suboptimal
geometric condition resulting in the region Ω0 being considerably smaller than the maximal region
satisfying the visibility condition.

In the recent joint work of the authors with P. Hoskins [1] one recovers the Radon projections of
f up to an infinitely smooth error, by solving the exterior problem for the wave equation in Rd \Ω,
and by computing the exterior Radon transform of the latter solution. This technique works only
with constant c(x) ≡ c0 and, with the exception of the case of a circular/spherical acquisition
surface, it is quite expensive computationally.

For earlier numerical techniques for the problem with the constant speed of sound we refer the
reader to [26–28].

3. Modified time reversal technique

Here we propose a new non-iterative image reconstruction procedure that, similarly to [1], recon-
structs f from greduced up to an infinitely smooth additive term. Unlike the method of [1] based on
solving the exterior problem, the present technique is a modification of the time reversal algorithm,
and it is applicable in the case of a variable smooth speed of sound. In addition, the new method
is, in general, much faster computationally. Moreover, in the case of constant speed of sound it can
be efficiently implemented using eigenfunction expansions.

Since Ω0 is closed and a subset of the open set Ω, the distance between Ω0 and ∂Ω is δ > 0. We
will also consider a certain proper subset Γ0 of Γ such that Γ0 = {x ∈ Γ : dist(∂Γ, x) > δ1 > 0}.
Our method, as presented below, works subject to the following geometric condition:

Condition 1. For the given support Ω0 of f and subset Γ0 of the measuring surface Γ, there exist:
a choice of Cartesian coordinates, a number T > 0 and (arbitrarily small) ε > 0 such that all
characteristics satisfying

x(0) ∈ Ω0 and ẋ1(t) ≤ 0 for some |t| < ε

intersect the set (0, T )× Γ0.

Remark 1. Due to our assumption that the speed of propagation c is constant outside of Ω0 and
the boundary of Ω is convex, if a characteristics βx,η,± with (x, η) ∈ T ∗Ω0 intersects the surface

∂Ω, it does so transversally. Moreover, if for some t0 > 0, x±(t0) ∈ ∂Ω, then x±(t) ∈ Rd \ Ω for
all t > t0.

In more colloquial terms Condition 1 means that every characteristic that passes through a
point in Ω0 at t = 0 and that does not intersect set (0, T ) × Γ0, must propagate to the right, i.e.
in the direction of increase of x1(t), during the time interval [−ε, ε] (i.e. ẋ1(t) > 0 on interval
t ∈ [−ε, ε]). Condition 1 is more restrictive than the Visibility Condition quoted above. Our
additional requirement is that we specify which of the two characteristics, βx0,η0,+ or βx0,η0,−,
should intersect the measurement surface. However, in the case of constant coefficients the two
conditions can be shown to be almost equivalent (”almost” here refers to the difference between Γ0

and Γ that can be made very small in practical terms.)
We observe that Condition 1 can be re-formulated as follows, in view of (10) and (11): If a

bicharacteristic satisfies η1(t)τ ≤ 0 for some |t| < ε, then the corresponding characteristic intersects
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(0, T )×Γ0 (transversally). Observe that on the complement ∂Ω\Γ0 we have the opposite condition,
i.e. the bicharacteristics intersecting ∂Ω \ Γ0 satisfy η1(t)τ > 0 for all |t| < ε. The same is true for
all trapped bicharacteristics, i.e. for characteristics which do not intersect ∂Ω for any time.

Condition 1 depends on the choice of the coordinate system, in particular on the choice of the
coordinate x1. From now on we assume that such choice exists and has been made, so that the
latter condition is satisfied.

3.1. Time reversal with reduced data. When the reduced data greduced is used instead of full
data g, there is a danger of creating unwanted singularities on the boundary ∂Γ. In order to avoid
this we introduce a smooth spatial cut-off. To this end, define a function ψ ∈ C∞(∂Ω) such that
0 ≤ ψ(z) ≤ 1, ψ(z) = 1 for all z ∈ Γ0 and ψ(z) = 0 for z ∈ ∂Ω\Γ. We define the function
hreduced ∈ Hk((0,∞)× ∂Ω) by setting

(12) hreduced(t, z) ≡ κ(Tt)ψ(z)greduced(t, z) = κ(Tt)ψ(z)g(t, z), (t, z) ∈ [0,+∞)× ∂Ω,

with the function κ(t) introduced in the beginning of Section 2.1. Further, we extend hreduced(t, z)
to negative t in an even fashion, i.e.

(13) hreduced(−t, z) ≡ hreduced(t, z), (t, z) ∈ (0,+∞)× ∂Ω.

Now let us consider the solution w(t, x) of the time reversal problem (5) with the boundary data

w(t, z) = hreduced(t, z), (t, z) ∈ (−T1,mT )× ∂Ω.

The result is w(t, x) ≡
[
ΛTh

reduced
]

(t, x); by restricting it to t = 0 one obtains

w(0, x) =
[
RΛTh

reduced
]

(x). The latter function can be viewed as a crude approximation to f(x).
We will call w(0, x) a näıve reconstruction of f(x). This approximation differs little from the one
analyzed in [9], see beginning of section 2.2.2.

3.2. Modified time reversal. Our goal is to construct a sequence of easily computable operators
that yields a microlocally accurate approximation to f(x). Our method consists of applying to
the time reversed solution w(t, x) a linear filter that eliminates, roughly speaking, a half of all
singularities contained in w(t, x). Since the exact solution u(t, x) satisfies the initial condition
ut(0, x) = 0, each singularity of f(x) generates two singularities of equal strength in u(t, x) that
propagate at t = 0+ in opposite directions. Each of these singularities carries full information
about the corresponding singularity in f(x). By eliminating one half of the singularities and by
doubling the result, one can obtain a microlocally accurate approximation to f(x). Some of the
singularities that were present in u(t, x) are absent in w(t, x) since the measuring surface is open.
If Condition 1 is satisfied, all the missing singularities are a subset of the singularities eliminated
by our filtration procedure. Thus, they do not affect the reconstructed approximation to f(x). The
details are given below.

Consider the forward and inverse Fourier transforms Fn and F−1
n of a function p of n variables:

p̂(ξ) ≡ (Fnp) (ξ) =

∫
Rn

p(x)e−iξ·xdx, p(x) =
(
F−1
n p̂

)
(x) =

1

(2π)n

∫
Rn

p̂(ξ)e−iξ·xdξ,

x = (x1, ..., xn) ∈ Rn, ξ = (ξ1, ..., ξn) ∈ Rn.

Further, let us define a 1-dimensional Hilbert transform Hxjp acting along coordinate xj , j ∈ 1, ..., n:[
Hxjp

]
(x) ≡ i

[
F−1
n (p̂(ξ) sgn(ξj))

]
(x).

Note that this definition is valid as long as p is a tempered distribution, that is p ∈ S ′(Rn). From
the definition of the Hilbert transform it follows that H2

xj = −I and that Hxj is a continuous

operator on Hs(Rn). Furthermore, since the function sgn(ξj) is an odd function, we observe that
the Hilbert transform maps odd functions into even ones and vice versa.
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We will construct an approximation to f(x) by applying a linear filter to w(t, x). For a function
v defined on (−T1, T1)× Ω we define the extension v0 to all of Rd+1 by setting

v0 =

{
v for (t, x) ∈ (−T1, T1)× Ω .

0 for (t, x) /∈ (−T1, T1)× Ω .

We will denote the associated extension operator by E , that is v0 = Ev. Let us introduce a smooth
and symmetric cut-off in t by means of χ ∈ C∞0 (R) satisfying 0 ≤ χ ≤ 1 and

χ(t) =

{
1 if t ∈ (−T1 + ε, T1 − ε) ,
0 if (t, x) /∈ (−T1, T1) ,

for some ε > 0. Note that χw0 ∈ C(R, L2(Rd)). Now we apply a composition of two Hilbert
transforms, one with respect to t and one with respect to x1, to χw0 and define distribution q(t, x)
as follows

q(t, x) = [(I −Hx1Ht)(χw0)](t, x), x ∈ Ω, t ∈ R.
In fact, we are only interested in the values of q for (t, x) ∈ (−ε, ε) × Ω0. Our analysis will show

that the restriction to t = 0, that is f̃ ≡ Rq, is well defined. This is the approximate solution that
we seek. (Abusing notation we denote by the same letter R both the restriction operator defined
on R× Rd and the one on R× Ω.) Our method is thus represented by the formula

(14) f̃(x) ≡ [R(I −Hx1Ht)(χw0)](x), x ∈ Ω.

Further, we observe that

(15) f̃(x) = w(0, x)− [RHx1Ht(χw0)](x) = w(0, x)− [Hx1RHt(χw0)](x), x ∈ Ω,

since operators Hx1 and R commute. It follows that f̃(x) differs from w(0, x) by a correction term
−[Hx1RHt(χw0)](x).

In the next section we show that, if Condition 1 is satisfied, the difference between f̃(x) and f(x)
is a C∞ function on Ω. Moreover, if our algorithm is applied to full data and the observation time
is infinite, the reconstruction is theoretically exact.

4. Analysis of the new method

We need to make sure that formulas (14) and (15) make sense, or, more precisely, that application
of the restriction operator R is well defined. In view of (15) it will suffice to justify the application
of R to Ht(χw0). This is not trivial, since when applied to a general distribution p, the one-
dimensional Hilbert transform acting with respect to the variable xj may enlarge the wave front
set of p. This happens as long as there are frequencies ξ in WF(s) which are orthogonal to the
direction of the axis xj . More precisely we have the following result, where for convenience we set
j = n and abbreviate x′ = (x1, ..., xn−1):

Proposition 2. Let p ∈ S ′(Rn). Then Hxnp ∈ S ′(Rn) and

WF(Hxnp) ⊂WF(p) ∪ {(x, ξ) ∈ T ∗Rn : (y, ξ) ∈WF(p), x′ = y′, ξn = 0} .
Proof. We know that

(Hxnp)(x) = p.v.
1

π

∫
R

p(x′, yn)

xn − yn
dyn .

Hence, the kernel of the Hilbert transform is

K(x, y) = p.v.
1

π

δ(x′ − y′)
xn − yn

.

Let

k(x) = p.v.
δ(x′)

πxn
=

1

π
δ(x′)⊗ x−1

n x′ = (x1, ..., xn−1) ,
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where x−1
n is the Hörmander’s notation for the principal value of 1/xn [29, p.72] . At first we will

show that

WF(k) ⊂ {0} × (Rn \ 0) ∪ {(0, xn; ξ′, 0) : ξ′ ∈ Rn−1 \ 0}
Since WF(δ) = {(0, ξ′) : ξ′ ∈ Rn−1 \0} and WF(x−1

n ) = {(0, ξn) : ξn 6= 0}, the implication follows
from Theorem 8.2.9 [29]. Using Theorem 8.2.4 [29] gives then

WF(K) ⊂ {(x, x; ξ,−ξ) : ξ ∈ Rn \ 0} ∪ {(x, y; ξ,−ξ) : x′ = y′ and ξ ∈ Rn \ 0, ξn = 0}

and applying Theorem 8.2.13 [29] establishes

WF(Hxnp) ⊂WF(p) ∪ {(x, ξ) ∈ T ∗Rn : (y, ξ) ∈WF(p), x′ = y′, ξn = 0} .

�

The wave front set of a functions gives a microlocal description of the set of singularities of this
function. If (x, ξ) ∈WF(p), then we refer to x as the base point and ξ as the frequency. Let us now
investigate the operator (I −Hx1Ht). Note that the Hilbert transform Hxj is a Fourier multiplier;

the same is true for the composition Hx1Ht. To be more specific, for p ∈ S ′(Rd+1) we have

(Hx1Ht)p = F−1
(d+1) [p̂(ξ)sgn(ξ0)sgn(ξ1)] ,

where ξ0 is the Fourier variable dual to t, and ξ1 is the dual to x1. Hence,

(16) (I −Hx1Ht)p = F−1
(d+1) [p̂(ξ)(1− sgn(ξ0ξ1))] .

Set x′ = (x2, ..., xd). Relying on Proposition 2 and on 1 − sgn(ξ0ξ1) = 0 whenever ξ0ξ1 > 0, we
have

WF([I −Hx1Ht]p) ⊂[WF(p) ∩ {(t, x; ξ0, ξ) ∈ T ∗Rd+1 : ξ0ξ1 ≤ 0}]

∪ {(t, x; 0, ξ) ∈ T ∗Rd+1 : (s, x; 0, ξ) ∈WF(p)}

∪ {(t, x; ξ0, 0, ξ
′) ∈ T ∗Rd+1 : (t, y; ξ0, 0, ξ

′) ∈WF(p), x′ = y′}

∪ {(t, x; 0, 0, ξ′) ∈ T ∗Rd+1 : (s, y; 0, 0, ξ′) ∈WF(p), x′ = y′} .

(17)

On one hand the application of the operator I − Hx1Ht will eliminate all elements of the wave
front which satisfy ξ0ξ1 > 0. On the other hand, points in the wave front set with zero time
frequency ξ0 = 0 can produce singularities at all points on the straight line parallel to the t-axis
passing through the base point. The same is true with respect to the x1 variable. Finally, these
two occurrences can be combined: If there is a point in the wave front set whose frequency satisfies
ξ0 = ξ1 = 0, then the application of I−Hx1Ht can spread this singularity to all points on the plane
parallel to the tx1-plane containing the base point.

The operator (I −Hx1Ht) applied to χw0 will have an impact on the wave front set. At the
end of the section we will use formula (17) to understand the wave front set of (I −Hx1Ht)χw0.
Note that due to the extension by zero outside of the space time cylinder, the function χw0 has
additional singularities supported on (−T1, T1)× ∂Ω.

We are ready to present an interesting result given by the following

Proposition 3. Suppose that d is odd and that the speed of sound is constant, i.e. c(x) ≡ c0 and
T ≥ c0 diam(Ω), or that the speed of sound is non-trapping and T →∞. If our algorithm is applied

to the full data g∗(t, z) (i.e. f̃(x) is computed using (15) with w = ΛT g
∗), then the reconstruction

is exact: f̃(x) = w(0, x) = f(x) on Ω0.

Proof. Since due to (6) [RΛT g
∗] (x) = f(x), it is enough to show that the correction termHx1RHt(χw0)

is equal to 0 on Ω0. Due to (7), w = ΛT g
∗ = u∗ is an even function of t for each x ∈ Ω. Since χ is

symmetric in t, the function χw0 is even in t as well. It follows that Htχw0 is odd. Therefore, if
we show that the restriction operator R is well defined, then the proof is complete.
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Let P = ∂2
t − c2(x)∆. By Theorem 18.1.28 in [30] we know that

WF(w) ⊂ CharP = {(t, x; ξ0, ξ) ∈ T ∗Q \ 0 : ξ2
0 = c2(x)|ξ|2} .

This shows that every element in the wave front set has non-zero time frequency ξ0 and non-zero
space frequency. The multiplication by χ does not enlarge the wave front set, since χ is smooth.
However, the function χw0 may have additional elements in the wave front set over the boundary
(−T1, T1) × ∂Ω due the extension by zero. Since χw = χu∗ in Q and u∗ is defined for all (t, x)
we can view the χw0 as a product of the characteristic function of the space time cylinder R × Ω
with χu∗. The wave front set of this characteristic function is just the co-normal bundle of R×∂Ω.
Hence, we can apply Theorem 8.2.9 [29] and obtain,

WF(χw0)
∣∣
(−T1,T1)×∂Ω

⊂{(t, x;α+ β) ∈ T ∗[(−T1, T1)× ∂Ω] \ 0 :

(t, x;α) ∈WF(u∗) or α = 0 and β = sνx, s ∈ R} .
According to Proposition 2 the application of Ht can only move elements in the wave front set with
zero time frequency. In particular, the wave front set of Htχw0 has an empty intersection with the
co-normal bundle of {0} × Ω, that is

N({0} × Ω) = {(0, x; ξ0, 0) : x ∈ Ω, ξ0 6= 0} .
Hence, the restriction operator R is well-defined, see Lemma 3 in [1]. �

Remark 4. Note that we have proved RHtχEu∗ ≡ 0. Here E is the extension operator, defined in
Section 3.2. This result holds for any d ≥ 2 and for any (not necessarily constant) smooth c(x).

We, however, are mostly interested in the problem with reduced data. In this case we will show
that, if Condition 1 is satisfied, then the approximation f̃(x) defined by (15) satisfies f̃(x) = f(x)+
r(x), where r ∈ C∞(Ω). In other words a left parametrix of the operator A will be constructed.

Let us represent w(t, x) ≡
[
ΛTh

reduced
]

(t, x) in the form

w(t, x) = u∗(t, x) + e(t, x)

where e(t, x) ≡ w(t, x) − u∗(t, x) is the difference between approximation w to u∗ and the exact
solution u∗. Using Proposition 3, in particular the Remark above,

(18) f̃(x) = [R(I −Hx1Ht)(χw0)](x) = f(x) + r(x),

with

(19) r(x) ≡ [R(I −Hx1Ht)(χe0)](x).

Theorem 5. If Condition 1 is satisfied, then R(I −Hx1Ht)(χEΛT ) is a left parametrix of A, i.e.
(18) holds with r(x) ∈ C∞(Ω). 1

In order to prove Theorem 5 we need to take a closer look at the wave front set of g. In what
follows, the exterior unit normal field of Ω along ∂Ω is denoted by ν. Let γ0 and γ1 denote the
trace operators, i.e. linear mappings

γ0 : u 7→ u
∣∣
R×∂Ω

, γ1 : u 7→ ∂νu
∣∣
R×∂Ω

Proposition 6. Let f ∈ Hs(Rn) with supp f ⊂ Ω0 for some s ∈ R and let u ∈ C([0,∞), Hs(Rd))
be the unique solution to (1)-(2). Let u∗ be the even extension to all times introduced in (4) and

g∗ = γ0u
∗ = u∗

∣∣∣
R+×∂Ω

. Then,

WF(g∗) ⊂{
(
t, x±(t);±c(x0)|η0|,±[η±(t)− (η±(t) · νx±(t))νx±(t)]

)
∈ T ∗(R× ∂Ω) \ 0 :

x±(t) ∈ ∂Ω and (x0, η0) ∈WF(f)} .

1Note that the application of the ”rough parametrix” of [26] yields an error of limited smoothness (described by
a ψDO of order −1 applied to f), whereas the error resulting from the use of our parametrix is infinitely smooth.
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where x±(t) and η±(t) are the unique solutions to the two initial value problems (11). Furthermore,
every point in WF(g∗) is a hyperbolic point. This is to say that (t, y; τ, ξ) ∈ WF(g∗) implies
|τ | > c(y)|ξ|.

Proof. By the standard results on propagation of singularities (see e.g. [31, Section 1] or [30,
Chapter 23]) we know that

(20) WF(u∗) ⊂ {γx,η,+ ∪ γx,η,− : (x, η) ∈WF(f)} ⊂ T ∗Rd+1
+ \ 0

where γx,η,± are the bicharacteristics introduced in (10). Hence, the wave front set of the restriction
of u to the boundary Rt × ∂Ω is the set

WF(u∗
∣∣
R×∂Ω

) ⊂ {γx,η,+(t) ∪ γx,η,−(t) : x±(t) ∈ ∂Ω and (x, η) ∈WF(f)}

Note that WF(u
∣∣
R×∂Ω

) ∩N(R × ∂Ω) = ∅. Hence, using Lemma 3 in [1] we obtain the wave front

set of g∗ from the wave front set of u by taking the tangential projection of the spatial frequency.
For the second statement, let (t, y; τ, ξ) ∈WF(g∗). Then there exists a point (t, y; τ, η) ∈WF(u∗)

where

ξ = η − (η · νy)νy and |τ | = c(y)|η| .
Since all bicharacteristics originating in Ω0 intersect ∂Ω transversally, η /∈ T ∗y ∂Ω and thus c(y)|ξ| <
c(y)|η| = |τ |. �

Remark 7. For the normal derivative γ1u of u we have a similar result:

WF(γ1u) ⊂{
(
t, x±(t);±c(x0)|η0|,±[η±(t)− (η±(t) · νx±(t))νx±(t)]

)
∈ T ∗(R× ∂Ω) \ 0 :

x±(t) ∈ ∂Ω and (x0, η0) ∈WF(f)} .

Proposition 8. For |t| < ε and x ∈ Ω, the frequency variables (τ, η) of the wave front set of
e = w − u∗ satisfies τη1(t) > 0. Furthermore, for |t| < ε, e is smooth near the boundary ∂Ω.

Proof. Since e = w−u∗ it is the unique solution to the backwards running Cauchy-Dirichlet problem

(21)

 c2(x)∆xe(t, x) = ett(t, x), (t, x) ∈ Q = (−T1,mT )× Ω,
e(mT, x) = −u∗(mT, x), wt(mT, x) = −u∗t (mT, x), x ∈ Ω,
e(t, z) = (κ(Tt)ψ(z)− 1)g∗(t, z), (t, z) ∈ (−T1,mT )× ∂Ω,

and e = −u∗ in (mT, T1)× Ω. The last statement is void if T1 ≤ mT .
Hence, for |t| < ε the function e may incur singularities from its Cauchy data and its Dirichlet

data. Note that the Cauchy data of e depend only on u∗.
Combining formula (20) with Condition 1 and the comments made right after, we know that

(22) WF(u∗) ∩ T ∗((T,∞)× Ω))

⊂ {γ(t) ∈ T ∗((T,∞)× Ω) : x(t) ∈ Ω for all t > 0 and η1(t)τ > 0 for all |t| < ε} .

Hence, the Cauchy data of e can only cause singularities supported on such bicharacteristics γ that
for |t| < ε satisfy η1(t)τ > 0 and that do not intersect the boundary ∂Ω for positive t ∈ (0, T ).

To determine the singularities of e which are caused by the singularities of the Dirichlet data
(κ(T ·)ψ − 1)g∗, we rely on the work by M. Taylor [31, Section 2] which can be summarized as
follows: The singularities of the Dirichlet data at a hyperbolic point can propagate only along
null bicharacteristics over these points. If (t, x; τ, ξ) ∈ T ∗(R × ∂Ω) is a hyperbolic point, then the
two null bicharacteristics over (t, x; τ, ξ) pass through the points (t, x; τ, η+(t)) ∈ T ∗(R × Ω) and

(t, x; τ, η−(t)) ∈ T ∗(R× Ω), respectively, where η±(t) = ξ ± νx
√
τ2/c(x)2 − |ξ|2.

The crucial observation is here that the projection of η±(t) into T ∗x∂Ω is just ξ. While the η-
component of the wave front set of u∗ was projected into the cotangent bundle of R× ∂Ω in order
to obtain the wave front set of the Dirichlet trace g in Proposition 6, the step taken here is the
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converse one. One finds the wave front set of the solution e of a Dirichlet problem by reconstructing
the null bicharacteristics over the hyperbolic points in the wave front set of (κ(T ·)ψ − 1)g∗.

According to the previous proposition, every point in the wave front set of (κ(T ·)ψ − 1)g∗ is a
hyperbolic point. Since e is the solution to a backward problem in time, we consider the evolution of
the solution along the decrease in time. Depending on the sign of τ one characteristic is incoming,
i.e. it is leaving Q at (t, x) for decreasing values of t. The other is outgoing, i.e. it is entering Q at
(t, x) for decreasing values of t. Only the latter one is of interest. (Note that the terms incoming
and outgoing are commonly used with respect to the boundary R× ∂Ω.)

By the previous proposition, we know that (κ(T ·)ψ − 1)g∗ has a singularity at (t, x; τ, ξ) if and
only if (x0, η0) ∈ WF(f) and either γx0,η0,+(t) = (t, x, τ, η−(t)) in the case τ > 0 or γx0,η0,−(t) =
(t, x, τ, η+(t)) for τ < 0. Those null bicharacteristics may carry singularities of e. According to
Condition 1 we know that those bicharacteristics satisfy η1(t)τ > 0 for |t| < ε. Combining with
formula (22), we conclude that

WF(e) ∩ T ∗((−ε, ε)× Ω) ⊂ {γ(t) ∈ T ∗((−ε, ε)× Ω) : x(0) ∈ Ω0 and τη1(t) > 0} .

Since the distance between Ω0 and ∂Ω is δ > 0, we can guarantee that e is smooth near (−ε, ε)×∂Ω
by choosing ε sufficiently small. �

Now we can finish the proof of Theorem 5 by combining the last proposition with formula (17).

Proof. We will show that

WF([I −Hx1Ht]χe) ∩ T ∗((−ε, ε)× Ω) = ∅ .

Thus, the restriction to t = 0, that is r = R(I −Hx1Ht)χe0, must be smooth in Ω.
Since χe0 ∈ S ′(Rd+1), formula (17) is applicable to assess the wave front set of [I −Hx1Ht]χe0.

The previous proposition shows that the wave front set inside of the space time cylinder (−T1, T1)×Ω
is confined to bicharacteristics. Since the time frequency ξ0 of these elements is never zero, the
Hilbert transform Ht does not change the location of these singularities. On the other hand,
elements with ξ1 = 0 can get moved along lines parallel to the x1-axis. The result of the previous
proposition establishes that all singularities in (−ε, ε) × Ω get cancelled by the application of the
operator I −Hx1Ht.

However, there is another set of singularities located on the surface (−T1, T1) × ∂Ω which are
caused by the extension operator. This time we cannot argue as in the proof of Proposition 3 since
e is defined only in Q and has no natural extension to the whole space. Hence, we use the formula

WF(χe0) ⊂WF(Pχe0) ∪ CharP where P =
1

c2
∂2
t −∆ ,

see [30, Theorem 18.1.28] to find the singularities of χe0 on (−T1, T1) × ∂Ω. For that we need to
compute the distribution P (χe0). Let φ ∈ C∞0 (Rd+1) be a test function and denote the action of
the distribution P (χe0) on φ by 〈P (χe0), φ〉. Using the definition of the distributional derivative
and partial integration gives

〈P (χe0), φ〉 = 〈χe0, Pφ〉 =

∫ T1

−T1

∫
Ω
χePφdxdt =

∫ T1−ε

−T1+ε

∫
Ω

1

c2
[∂2
t χeφ+ 2∂tχ∂teφ] dtdx

−
∫ T1

−T1

∫
∂Ω

[χe∂νφ− χ∂νφ] dσdt ,

provided e is sufficiently smooth (e ∈ H2(Q) will suffice.) The formula above yields

(23) P (χe0) =
1

c2
∂2
t χe+

2

c2
∂tχ∂te+ γ0(χe)⊗ δ′(−T1,T1)×∂Ω + γ1(χe)⊗ δ(−T1,T1)×∂Ω ,
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where γ0, γ1 are the previously introduced trace mappings and δS and δ′S are distributions supported

on a smooth surface S in Rd+1 defined by

〈δS , φ〉 =

∫
S
φdσ and 〈δ′S , φ〉 = −

∫
S
∂νφdσ .

Note that formula (23) can be justified for less regular e by means of an approximation argument.
The wave front set of these two distributions is the co-normal bundle of the surface whereas the
wave front of the traces is computed as in Proposition 6 and the following remark. Hence, we can
apply Theorem 8.2.9 [29] and obtain,

WF(χe0)
∣∣
(−T1,T1)×∂Ω

⊂{(t, x;α+ β) ∈ T ∗[(−T1, T1)× ∂Ω] \ 0 :

(t, x;α) ∈WF(e) or α = 0 and β = sνx, s ∈ R} .
(24)

We will explain that no elements in this set get spread into the set (−ε, ε)× Ω by the application
of I −Hx1Ht.

According to (17) we have to be concerned with elements with zero time frequency ξ0 and/or
zero frequency ξ1.

(i) ξ0 = 0: The points in the wave front set on the lateral boundary (−T1, T1)×∂Ω with ξ0 = 0 are
in the co-normal bundle of the lateral boundary, according to the formula above. These singularities
can get spread along the straight line passing through the base point and parallel to the t-axis.
They remain on the boundary.

(ii) ξ0 = ξ1 = 0. According the formula above, these elements are in the co-normal bundle of
(−T1, T1)×∂Ω and the x1-component of νx is zero. From (17) we know that these singularities can
be spread to points on the plane through the base point and parallel to the tx1-plane. Since Ω is
convex, these planes are outside of the cylinder (−T1, T1)× Ω.

(iii) ξ1 = 0: If there is an element in the wave front set with ξ1 = 0, the application of I −Hx1Ht
may spread this singularities along straight lines through the base points and parallel to the x1-axis.
This will not matter as long as |t| > ε. On the other hand, by the previous proposition e is smooth
near the boundary for small |t|. Hence, the wave front set of χe0 will be a subset of the co-normal
bundle of the boundary, for |t| < ε. These singularities cannot enter the space time cylinder, as
discussed in the previous paragraph. �

5. Algorithmic implementation of the present technique

5.1. Re-formulation of the method. Recall that w(t, x) is the solution of the IBVP (5) with
even data hreduced given by equations (12) and (13). Function w(t, x) is not even in t; however it
can be split into a sum of an even and odd functions weven(t, x) and wodd(t, x):

w(t, x) = wodd(t, x) + weven(t, x),(25)

weven(−t, x) = weven(t, x), wodd(−t, x) = −wodd(t, x), (t, x) ∈ [0, T1]× Ω.(26)

Function wodd(t, x) is a solution of a IBVP with homogeneous boundary conditions

(27)

{
c2(x)∆xw

odd(t, x) = wodd
tt (t, x), (t, x) ∈ (−T1, T1)× Ω,

wodd(t, z) = 0, (t, z) ∈ (−T1, T1)× ∂Ω
;

and it also satisfies the following Cauchy conditions at t = 0:

(28) wodd(0, x) = 0, wodd
t (0, x) = wt(0, x), x ∈ Ω.

This means that given wt(0, x), function wodd(t, x) can be computed in (−T1, T1) × Ω by solving
an IBVP (27), (28) forward in time form t = 0 to t = T1, and by applying (26).

Further, since the Hilbert transform maps even functions into odd ones, one obtains:

(29) f̃(x) = w(0, x)− [Hx1{RHt(χwodd)}](x), x ∈ Ω0.
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5.2. Algorithms based on finite differences. The simplest way to implement time-reversal is
by using finite difference techniques (see e.g., [13–15, 32]). This approach works especially well if
the boundary passes through the nodes of the computational grid, for example, if Ω is a rectangle
sampled using a Cartesian grid. Then one can use a very simple

Algorithm 1(a):

(1) Solve problem IBVP (5) backwards in time from t = mT to t = −T1;

(2) Compute f̃(x) using (14).

For Algorithms 1(a) and 1(b) (described below), one can choose T1 to be a small fraction of T
(see section 6.2 for examples).

Using the re-formulation presented in the previous section, one arrives at the
Algorithm 1(b):

(1) Solve problem IBVP (5) backwards in time from t = mT to t = 0;
(2) Obtain functions w(0, x) and wt(0, x);
(3) Solve IBVP (27) forward in time to t = T1;
(4) Extend wodd(t, x) to t ∈ [−T1, 0] using (26);

(5) Compute f̃(x) using (29).

In comparison with the finite difference implementations of the method of [1], the present tech-
nique offers two advantages. First, it works with a variable speed of sound c(x) (subject to Condition
1). In addition it is, in general, significantly faster. Consider, for example, a situation where Ω is a
cube C with a side length a, whose interior and exterior are discretized using the same Cartesian
grid defined in the whole of R3. Let’s say the speed of sound is constant and equal c0. For the
present technique the interior problem would have to be solved in [−T1,mT ]×C, with T = c0a

√
3.

On the other hand, the method of [1] requires solving an exterior (with respect to C) problem in
a sphere of diameter 3T, on the time interval [0, T ]. While the time intervals are comparable (T1

can be chosen to be much smaller than T, and m > 1 can be chosen to be close to 1), the volume

of the sphere is equal 9πT 3

2 comparing to T 3 for that of the cube. In other words, the number
of nodes of the Cartesian grid in the exterior of the cube C contained inside the sphere is about
(9π/2 − 1) ≈ 13 times larger than the number of nodes inside C. Therefore, if the same time
step is used in both algorithms, the present technique requires about an order of magnitude fewer
floating point operations. In addition, it eliminates the need to compute the d-dimensional Radon
transform, which is very costly if done in a straightforward way.

5.3. Algorithm based on separation of variables. While finite difference algorithms for solv-
ing problems (5) and (27) are well known and are easy to implement, techniques based on separation
of variables and/or spectral approximations of solutions offer much higher accuracies and, in cer-
tain cases, faster computations — when these techniques are applicable. In particular, separation
of variables allows one to write the solution of the wave equation in Ω in terms of the eigenfunc-
tions ϕk(x) of the positive Dirichlet Laplacian ∆c(x) ≡ −c2(x)∆x, see for example [8, 16]. For
completeness of the presentation we briefly (and very formally) review this known technique.

The eigenfunctions ϕk(x) of ∆c(x) are defined by the equation

−c2(x)∆xϕk(x) = λ2
kϕk(x), ϕk(z)|z∈∂Ω = 0, k ∈ N,

where the positive numbers λ2
k are the eigenvalues corresponding to ϕk(x). Eigenfunctions ϕk are

normalized to form a complete orthonormal system in L2(Ω, c−2(x)) under the weighted inner
product:

< ϕk, ϕm >≡
∫
Ω

ϕk(x)ϕm(x)
1

c2(x)
dx = 0 if k 6= m, < ϕk, ϕk >= 1, for k ∈ N.
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In order to solve problem (5) (with the boundary conditions hreduced(t, z)) one introduces a
harmonic (in x) function H(t, x), that for each fixed t ∈ [−T1,mT ) solves the Dirichlet problem in
Ω subject to the boundary conditions

(30) H(t, z) = hreduced(t, z), (t, z) ∈ [−T1,mT )× ∂Ω.

Then the solution w(t, x) is sought in the form

w(t, x) = H(t, x) +
∑
k

ck(t)ϕk(x),

where time dependent coefficients ck(x) are given by the following formula

ck(t) = − 1

λk

mT∫
t

Hk(τ) sin(λk(τ − t))dτ,

with Hk(t) ≡
∫
∂Ω

hreduced(t, z)
∂

∂ν
ϕk(z)dA(z).(31)

This yields, in particular,

(32) ck(0) = − 1

λk

mT∫
0

Hk(τ) sin(λkτ)dτ.

Since dist(Ω0, ∂Ω) = δ > 0, there is an interval I ≡ [−ε0, ε0] such that hreduced(t, z) = 0 for
(t, z) ∈ I × ∂Ω. It follows that Hk(t) = Htt(t, x) = 0 when t ∈ I, k ∈ N. Therefore,

w(0, x) =
∑
k

ck(0)ϕk(x),(33)

wt(0, x) =
∑
k

c′k(0)ϕk(x),(34)

c′k(0) =

mT∫
0

Hk(τ) cos(λkτ)dτ.(35)

Now the odd part wodd(t, x) of the solution w(t, x) can be obtained by solving the IBVP (27), with
the initial condition on wodd

t (0, x) given by (34). Therefore wodd(t, x) can be represented as follows:

wodd(t, x) =
∑
k

c′k(0)

λk
ϕk(x) sin(λkt).

Let us explicitly compute the term Ht(χwodd) entering the equation (29). Interchanging the order
of summation and integration one obtains:

[Ht(χwodd)](x) =
∑
k

c′k(0)

λk
ϕk(x)Ht(χ(t) sin(λkt)).

We now recall that χ(t) is supported on the interval [−T1, T1] with T1 free for us to vary. In
particular, at the limit of large T1 function Ht(χ(t) sin(λkt)) is the distributional Hilbert transform
of sin(λkt) which is equal to cos(λkt). So in the limit T1 →∞ we obtain

[Ht(χwodd)](x) =
∑
k

c′k(0)

λk
ϕk(x) cos(λkt)),
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Figure 1. Simulation of 3D reconstruction in a problem with a constant speed of sound

and

f̃(x) = w(0, x)− [Hx1v](x) with

v(x) ≡ [RHt(χwodd)](x) =
∑
k

c′k(0)

λk
ϕk(x).(36)

Remark 9. As a side note, by comparing (34) and (36) one can conclude that the correction term
[Hx1v](x) can be expressed in terms of wt(0, x) as follows

[Hx1v](x) =
[
Hx1

(
∆c(x)

)− 1
2 wt(0, ·)

]
(x).

For the sake of brevity, and taking into account that the eigenfunction expansion techniques have
been studied previously, we pursue here neither the proof of the above remark nor the analysis of
convergence of series (34) and (35).

Assuming that the eigenfunctions ϕk are explicitly known, we arrive at the following
Algorithm 2:

(1) Compute Hk(t), k = 1, ...,M, using (31);
(2) Compute ck(0) and c′k(0) given by (32) and (35);
(3) Compute w(0, x) by summing series (33);
(4) Compute v(x) by summing series (36);
(5) Compute correction term (i.e. term Hx1{RHt(χwodd)} in (29)) as Hx1{v(x)};
(6) Compute f̃(x) by adding the results of step 3 and step 5.
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Cross-section along line A

Cross-section along line B

Figure 2. Cross sections of the 3D example. The dotted line represents the näıve
reconstruction, the gray line is the ground truth, and the thick black line shows the
proposed parametrix

The above procedure does not yet represent an efficient image reconstruction algorithm. First,
this technique is only practical when eigenfunctions ϕk are known explicitly. This is mostly the
case when c(x) is constant, and when Ω is a rather simple geometrical region, such as ellipse,
ellipsoid (including circles and spheres), finite cylinder, rectangle, certain tetrahedra and some
crystallographic domains. Second, formulas for fast summation of series (33) and (36) are needed.
Third, interpolation in frequency domain may be required when computing (32) and (35), since
frequencies λk are in general, non-uniformly spaced, and their number is much larger (in 3D) than
the number of uniformly spaced values sampled with the Nyquist step. An example of such an
efficient algorithm implemented for a rectangular acquisition surface can be found in [16]. In one of
the computational examples presented in the next section, we demonstrate the work of the latter
technique modified to implement Algorithm 2.

6. Numerical simulations

In this section we describe several numerical simulations illustrating the work of the proposed
technique. In section 6.1 we solve the 3D problem with a constant speed of sound. A couple of
numerical experiments with non-uniform sound speeds in 2D are presented in section 6.2

All our simulations are done in rectangular domains, with acquisition surfaces being a part
of the domain boundary. Such domains are important from the applied point of view, and are
simple from a numerical standpoint. Even though our analysis covers only the case of infinitely
smooth acquisition surfaces, our simulations show that the present approach works as expected in
rectangular domains, too.

6.1. Fast algorithm for a 3D rectangular acquisition surface. We consider the inverse source
problem with reduced data in a 3D setting, with a constant speed of sound c(x) ≡ 1 and the
acquisition surface Γ being a subset of the boundary ∂Ω of the cube Ω = [−1, 1]3. More precisely,
Γ = {x = (x1, x2, x3) : x ∈ ∂Ω and x1 ≤ 0.8}. The support of the sought initial condition f(x) is
contained in the region Ω0 = {x = (x1, x2, x3) : −0.95 < x1 ≤ 0.66, |xk| < 0.95, k = 2, 3}. As a
model initial condition f(x) (the ”ground truth”) we utilized a linear combination of 20 slightly
smoothed characteristic functions of balls with various centers, radii, and weights. All the centers
where located on the plane x3 = 0. One advantage of using such a phantom is that the solution
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Figure 3. Speed of sound c(x) for the first 2D simulation and some of the cor-
responding geometric rays (characteristics). The union of the dashed line and the
thick gray line is Γ

of the forward problem can be computed theoretically exactly, since the Cauchy problem with a
rotationally symmetric initial conditions in 3D has an explicit solution (e.g. [33]). The gray scale
representation of the restriction of f(x) to the latter plane is shown in figure 1(a).

6.2. A 2D finite difference algorithm for the problem with non-uniform speed of sound.
An asymptotically fast algorithm based on eigenfunction expansion has been developed in [16] for
the problem with a rectangular acquisition surface and full data. Here we have used a modification
of that algorithm along the lines of section 5.3, allowing us to compute both the näıve approximation
and the correction term. The reconstructions were computed within the cube Ω discretized using a
257×257×257 Cartesian grid. Computing both the näıve approximation w(0, x) and the correction
term took about 66 seconds of the Intel i5-6300HQ processor running at 2.3 GHz in a single-thread
mode.

A central cross-section (along the plane x3 = 0) of w(0, x) is shown in figure 1(b); the parametrix
obtained by the proposed approach is presented in the part (c) of the latter figure. While the former
image clearly contains strong artifacts, the latter one looks very close to the ground truth. The
relative L∞ error in the constructed parametrix (computed over Ω0) is 4.6%, while the relative
L2 error is about 3%. The difference between images in parts (a) and (c) can be seen in figure
1(d), where it is plotted using a much finer gray scale. In order to make the comparison more
quantitative, we have drawn in figure 2 cross-sections of the images shown in figure 1 along a
horizontal and a vertical line (lines A and B in figure 2). The näıve reconstruction (i.e. w(0, x)
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Figure 4. Simulation of 2D reconstruction in a problem with a variable speed of sound
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Figure 5. Cross-sections of the 2D example. The dotted line represents the näıve
reconstruction, the gray line is the ground truth, and the thick solid black line shows
the image obtained using the proposed method

computed by summing series (33)) is presented by the dashed line; the thick black line corresponds
to the parametrix, and the thick gray line (partially hidden by the black line) is the ground truth.



PARAMETRIX 19

2.60

 2.10

 1.60

  1.10

  0.60

(a) Speed of sound c(x) (b) Rays starting at points with x1 = 0

(c) Rays starting at the point x = (0.5, 0.0)
Black rays do not satisfy Condition 1

(d) Rays starting at the point x = (0.5, 0.76).
The rays shown in black do not touch Γ

Figure 6. Speed of sound c(x) for the second 2D simulation and some of the
corresponding geometric rays (characteristics). The dashed line indicates Γ0, and
and the thick gray line is Γ \ Γ0

In our opinion, the proposed parametrix solution, although not theoretically exact, is accurate
enough for use in most practical applications.

In this section we demonstrate the work of our method in a couple of 2D simulations with
variable sound speeds. In these numerical experiments the region Ω is the square [−1, 1]2. The
acquisition surface Γ is a subset of the boundary ∂Ω, Γ = {x = (x1,x2): x ∈ ∂Ω and x1 ≤ 0.8}.
The support of the sought initial condition f(x) is contained in the region Ω0 = {x = (x1, x2) :
−0.95 < x1 ≤ 0.66, |x2| < 0.95}. As the ground truth (phantom) f(x) we use a linear combination
of 16 slightly smoothed characteristic functions of circles with various centers, radii, and weights,
see figure 4(a). Square Ω is discretized using 257 × 257 Cartesian grid. Both the forward problem
and the time-reversal are numerically solved using the explicit finite difference algorithm resulting
from applying standard second-order centered stencils in both time and space (see e.g., [34]).

For the first simulation our goal was to experiment with c(x) that is significantly non-uniform and
yet satisfy Condition 1. We choose the speed of sound c(x) shown on a gray scale in the figure 3(a).
It is can be viewed as a smooth ellipsoidal depression in a unit background, so that 0.65 ≤ c(x) ≤ 1.
(For convenience of numerical experimentation the support of inhomogeneity in c(x) is not contained
in Ω.). A variety of characteristics starting at several points with x1 ∈ {−0.2, 0, 0.6} are shown in
figures 3(b)-(d), respectively. One can see that some of the characteristics are significantly bend,
indicating that the effects of inhomogeneity of c(x) are not negligible. The computed characteristics
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Figure 7. Simulation of 2D reconstruction in a problem with lost rays

also satisfy Condition 1 (proving this assertion rigorously about all the needed characteristics is
not easy).

In the forward problem the time step is chosen to be 0.4 times the step of the Cartesian grid (with
the latter equal to 1/128). The boundary data are computed on time interval (0, 8.5]. The time
reversal is computed from t = mT = 8.5 to t = −T1 = −0.8, and the interval [−0.8, 0.8] is used to
compute the correction term, see Algorithm 1(a) in section 5.2. The result of näıve reconstruction
w(0, x) can be seen in the figure 4(b); the parametrix obtained by the present technique is shown
in 4(c). The difference between f(x) and the proposed approximation is presented in figure 4(d)
on much finer gray scale. This difference (i.e., the error of reconstruction) appears smooth in
accordance with our theoretical findings. The relative L∞ norm of the error (computed over Ω0)
is 7%, while the relative L2 error is about 6%.

In figure 5 we present cross-sections of the images shown in figures 4(a)-(c) along a horizontal
and a vertical line (lines A and B in figure 5). The näıve reconstruction is given by the dashed
line; the thick black line corresponds to the parametrix, and the thick gray line shows the ground
truth f(x).

Our second 2D numerical simulation is meant to illustrate the effects of violation of Condition 1
and the visibility condition. For this experiment we choose the speed of sound in the form of a
smooth circular depression and a smooth circular bump in a unit background, as seen in figure
6(a). For this choice of c(x) the maximum value is 2.46 while the minimum is 0.61. Characteristics
corresponding to this sound speed are shown in figure 6(b)-(d) for a certain set of starting points and
directions. Characteristics that start at points with x1 = 0 (see figure 6(b)) do satisfy Condition 1.



PARAMETRIX 21

However, for certain directions, characteristics starting at x = (0.5, 0) do not satisfy the latter
condition, see the black curve in figure 6(c). Namely, the ray that starts propagating ”left”, does
not touch Γ. Meanwhile, the ray that starts propagating ”right” does intersect Γ meaning that
Condition 1 is violated, but the visibility condition is not. On the other hand, for a starting point
x = (0.5, 76) there is a pair of opposite directions such that the characteristics originating at x and
going in these directions miss Γ entirely; see the black curve in the figure 6(d). It follows that the
point x is ”invisible”. Moreover, any point lying on the black curve is ”invisible”.

For the forward problem the time step is chosen to be 0.15 times the step of the Cartesian grid,
to guarantee stability of our numerical scheme in the presence of significantly larger (than in the
previous example) speed of sound. The boundary data are calculated on time interval (0, 8.5]. The
time reversal is computed from t = 8.5 to t = −T1 = −0.3, and the interval [−0.3, 0.3] is used to
compute the correction term. The result of näıve reconstruction w(0, x) can be seen in the figure
7(a); this to be compared to the ground truth f(x) shown in the figure 4(a). The image produced
by the proposed technique can be found in figure 7(b). The error in the latter solution (i.e. the
difference with f(x)) is presented in figure 7(c) using a finer gray scale. A closer look at the latter
figure reveals that at the regions where either visibility condition or Condition 1 is not satisfied, the
error(that otherwise is supposed to be infinitely smooth) seems to develop sharp edges. In other
words, our method does not produce a parametrix anymore. However, comparison of figures 7(a)
and (b) suggests that even in this case the proposed technique is still a large improvement over the
näıve reconstruction. Indeed, the L2 relative error in the latter is 34% comparing to 11% in the
former.
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