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Abstract. Currently, theory of ray transforms of vector and tensor fields is well developed, but the
Radon transforms of such fields have not been fully analyzed. We thus consider linearly weighted
and unweighted longitudinal and transversal Radon transforms of vector fields. As usual, we use the
standard Helmholtz decomposition of smooth and fast decreasing vector fields over the whole space.
We show that such a decomposition produces potential and solenoidal components decreasing at
infinity fast enough to guarantee the existence of the unweighted longitudinal and transversal Radon
transforms of these components.

It is known that reconstruction of an arbitrary vector field from only longitudinal or only
transversal transforms is impossible. However, for the cases when both linearly weighted and
unweighted transforms of either one of the types are known, we derive explicit inversion formulas
for the full reconstruction of the field. Our interest in the inversion of such transforms stems from
a certain inverse problem arising in magnetoacoustoelectric tomography (MAET). The connection
between the weighted Radon transforms and MAET is exhibited in the paper. Finally, we demon-
strate performance and noise sensitivity of the new inversion formulas in numerical simulations.

Keywords: Vector tomography, longitudinal Radon transform, transversal Radon transform,
wieighted Radon transform, explicit inversion formula

1. Introduction

In this paper we study unweighted and linearly weighted Radon transforms of vector fields.
There is a significant body of work on ray transforms (that involve integration over straight lines)
of vector and tensor fields [1–5]. In particular, exponential and attenuated ray transforms were
studied in [6–9], and momentum ray transforms were investigated in [10, 11]. However, when it
comes to the Radon transforms of vector fields (with integration over hyperplanes), there are very
few publications [12,13]; moreover, the consideration is usually restricted to unweighted transforms
of potential fields with finitely supported potentials. In the present paper we consider general vector
fields (i.e. not purely potential or solenoidal), and we study both unweighted and linearly weighted
Radon transforms.

As in the case of ray transforms, when studying the Radon transforms one finds it convenient
to use the Helmholtz decomposition. In other words, one splits a general vector field F into
the potential and solenoidal parts F p and F s, and considers transversal and longitudinal Radon
transforms of both F p and F s. However, even for a finitely supported field F components F p and
F s are defined in the whole space Rd and they are known to have only a polynomial decay at
infinity. Thus, in order to analyze the Radon transforms of F p and F s one first needs to prove that
such transforms do exist (i.e. integrals over hyperplanes in Rd converge). This is not completely
trivial. In particular, the estimate given in the foundational book [5] on ray transforms does not
guarantee the convergence of the Radon transforms. Thus, first we obtain an improved estimate for
the rate of decay at infinity of the potential and solenoidal parts F p and F s of a fast decaying field
F. This estimate guarantees the existence of the unweighted longitudinal and transversal Radon
transforms of F p and F s.

Similarly to the case of ray transforms, the longitudinal Radon transforms of a potential field
vanish. The same is true for the transversal transform of a solenoidal field. Therefore, reconstructing
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a general vector field from only the longitudinal or only the transversal transform(s) is not possible.
However, it is not unusual in practice [6] that one of the transform types (either longitudinal
or transversal) cannot be measured. In order to replace missing information one may consider
measuring weighted transforms of the available type. For example, our interest in this problem
stems from a certain measurement scheme in the magnetoacoustoelectric tomography (MAET).
This scheme does not permit measuring a transversal transform of a certain vector field, but, in
addition to longitudinal transforms one can measure linearly weighted longitudinal transforms of
that field.

Below we present explicit formulas for solving two distinct problems. The first problem is that of
reconstructing a general vector field from known values of its transversal transform, and from d−1
weighted transversal transforms with various linear weights. The second problem (motivated by
MAET) is the reconstruction of a general vector field from d− 1 of its longitudinal transforms and
one weighted longitudinal transform (again, with a linear weight). The reader may want to compare
our solutions of these problems to the results of [11], where a full vector field is reconstructed from
a ray transform and a first-moment ray transform.

The rest of the paper is organized as follows. We define all the needed transforms in Section 2.1
below, and we present explicit solutions to the above two problems in Section 2.2. In Sections 3 and 4
we provide proofs of the theorems formulated in Section 2. Section 5 exhibits a potential application
of the Radon transforms of vector fields to a problem arising in MAET. We further validate our
theoretical results by numerical simulations, see Section 6. Finally, the proof of Theorem 1 (on the
rates of decay of F p and F s) is relegated into the Appendix.

2. Formulation of the main results

2.1. Definitions and technical estimates. Consider a continuous function f(x) defined in Rd,
subject to the condition f(x) = O

(
|x|−d

)
at infinity. Define a hyperplane Π(ω, p) by the equation

ω · x = p, where Sd−1 is the unit sphere in Rd, and (ω, p) ∈ Sd−1 ×R. The Radon transform Rf is
defined as the set of integrals of f over all the hyperplanes:

[Rf ] (ω, p) ≡
∫

Π(ω,p)

f(x) dAΠ(x), (ω, p) ∈ Sd−1 × R,

where dAΠ(x) is the standard area element on Π(ω, p). Properties of the Radon transform are
traditionally studied for functions f(x) from the Schwartz class S(Rd). We recall that this class
consists of all C∞(Rd) functions f(x) whose derivatives decay at infinity faster than any rational
function:

(1) sup
x∈Rd

|xβDαf(x)| <∞, |α| = 0, 1, 2, ..., |β| = 0, 1, 2, ...,

where α and β are multiindeces, α = (α1, ..., αd), β = (β1, ..., βd), αj ’s and βi’s are non-negative

integers, |α| =
∑d

j=1 |αj |, |β| =
∑d

i=1 |βj |, and

Dαf(x) =
∂|α|

∂α1x1∂α2x2...∂αdxd
f(x), xβ = xβ11 x

β2
2 ...x

βd
d .

A function f(x) ∈ S(Rd) can be reconstructed from its projections g = Rf using the well known
filtered backprojection inversion formula [14]:

(2) f = R−1(g) ≡ 1

2
(2π)1−dI−αR#Iα−d+1g,
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whereR# is the dual Radon transform that acts on a function g(ω, p) defined on Sd−1×R according
to the formula

[R#g](x) =

∫
Sd−1

g(ω, ω · x)dω,

and where the Riesz potential Iαf of a function f is expressed through the direct and inverse
Fourier transforms F and F−1 as follows

[Iαf ](x) = [F−1(|ξ|−α[Ff ](ξ))](x).

Let us consider now a continuous vector field F (x) = (F1(x), ..., Fd(x)) defined on Rd, d ≥ 2,
whose components decay fast enough for the existence of integrals over each hyperplane (e.g.,
|F (x)| = O

(
|x|−d

)
). Below we define several types of Radon transforms of such a field.

The componentwise Radon transform RF of F is defined in the obvious way:

[RF ] (ω, p) ≡ (RF1, ..,RFd) (ω, p), (ω, p) ∈ Sd−1 × R.

The transversal Radon transform D⊥F is the Radon transform of the projection of F onto the
normal ω to the plane Π(ω, p):

(3)
[
D⊥F

]
(ω, p) ≡

∫
Π(ω,p)

ω · F (x) dAΠ(x) = [R(ω · F (x))] (ω, p), (ω, p) ∈ Sd−1 × R.

For each fixed direction ω ∈ Sd−1, let us arbitrarily extend ω to an orthonormal basis B =
(ω, ω1, ..., ωd−1) of Rd, where ωj = ωj(ω), j = 1, ..., d − 1. To simplify the notation, below we
will suppress the dependence of ωj ’s on ω. Define the longitudinal Radon transforms Dq

kF of F,
k = 1, ...d− 1, as follows:

(4)
[
Dq
kF
]

(ω, p) ≡
∫

Π(ω,p)

ωk · F (x) dAΠ(x) = [R(ωk · F (x))] (ω, p), (ω, p) ∈ Sd−1 × R.

For a faster decaying vector field F (x) (e.g. satisfying |F (x)| = O
(
|x|−d−1

)
), one can define the

weighted transversal transforms W⊥k and longitudinal transforms Wq
k with linear weights ωk · x,

k = 1, ...d− 1, by the following expressions:[
W⊥k F

]
(ω, p) ≡

∫
Π(ω,p)

(ωk · x)F (x) · ω dAΠ(x) =
[
D⊥((ωk · x)F (x))

]
(ω, p),(5)

[
Wq
kF
]

(ω, p) ≡
∫

Π(ω,p)

(ωk · x)F (x) · ωk dAΠ(x) =
[
Dq
k((ωk · x)F (x))

]
(ω, p),(6)

with (ω, p) ∈ Sd−1 × R.
The present definitions of the unweighted longitudinal and transversal Radon transforms coincide

with those given in [4, 6] (where they are mentioned under the names of “probe” and “normal”
transforms, respectively). Our definitions of the weighted transforms appear to be new; they
naturally extend the notion of “moments ray transforms” [6, 11] to the case of Radon transforms.

It is well known that the Radon transform of a scalar function considered on Sd−1×R is redundant.
Indeed, since Π(ω, p) = Π(−ω,−p), one concludes that [Rf ] (ω, p) = [Rf ] (−ω,−p). Similarly, by
inspecting equation (3) one can see that

[
D⊥F

]
(ω, p) = −

[
D⊥F

]
(−ω,−p), where the change of

sign occurs due to the factor ω· under the integral. The definitions of transforms Dq
k, W

⊥
k , and

Wq
k depend on two vectors, ω and ωk. In general, our definition of basis B permits a significant
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freedom in choosing the dependence ωk = ωk(ω). However, if we restrict consideration to the case
ωk(ω) = −ωk(−ω), the following redundancies will arise[

Dq
kF
]

(ω, p) = −
[
Dq
kF
]

(−ω,−p), (ω, p) ∈ Sd−1 × R, k = 1, ...d− 1,[
W⊥k F

]
(ω, p) =

[
W⊥k F

]
(−ω,−p), (ω, p) ∈ Sd−1 × R, k = 1, ...d− 1,[

Wq
kF
]

(ω, p) =
[
Wq
kF
]

(−ω,−p), (ω, p) ∈ Sd−1 × R, k = 1, ...d− 1.

Such redundancies can be exploited in practice, to reduce the number of required measurements
and to halve the number of floating point operations when implementing inversion formulas, both
known and the ones presented below. (For example, operator R# in (2) can be computed by
integration over a half of a sphere.) However, since the focus of this paper is mostly theoretical,
for simplicity of presentation we will work with projections defined on Sd−1 × R.

For the future reference we note the obvious relations

(7)
[
D⊥F

]
(ω, p) = ω · [RF ] (ω, p),

[
Dq
kF
]

(ω, p) = ωk · [RF ] (ω, p), (ω, p) ∈ Sd−1 × R.

Let us now consider a smooth and fast decaying vector field F (x) such that each component
Fm(x) of F (x) is a function from the Schwartz space S(Rd). We define the potential ϕ as the
convolution of the divergence Φ of F with the fundamental solution G of the Laplace equation
in Rd:

(8) ϕ(x) = (Φ ∗G)(x) =

∫
Rd

Φ(y)G(x− y)dy, Φ(x) = divF (x), x ∈ Rd,

where explicit expressions for G(x) are well known:

G(x) =
1

2π
ln |x| for d = 2, G(x) = −Γ(d/2− 1)

4π2
|x|2−d for d ≥ 3.

Now the potential part F p of the field F is the gradient of ϕ:

(9) F p(x) = ∇ϕ(x), x ∈ Rd,

and the solenoidal part F s is just the difference

(10) F s(x) = F (x)− F p(x), x ∈ Rd.

The following theorem is a technical result that is an important tool in our investigation.

Theorem 1. Suppose that each component Fk(x), k = 1, ..., d of a vector field F (x) is a function
from the Schwartz class S(Rd). Then potential ϕ and fields F p and F s given by equations (8)-(10)
have the following decay rates at infinity

|ϕ(x)| = O
(

1

|x|d−1

)
,(11)

|F p(x)| = O
(

1

|x|d

)
, |F s(x)| = O

(
1

|x|d

)
,(12) ∣∣∣∣ ∂∂xj F p(x)

∣∣∣∣ = O
(

1

|x|d+1

)
,

∣∣∣∣ ∂∂xj F s(x)

∣∣∣∣ = O
(

1

|x|d+1

)
,(13) ∣∣∣∣ ∂2

∂xj∂xk
F p(x)

∣∣∣∣ = O
(

1

|x|d+2

)
,

∣∣∣∣ ∂2

∂xj∂xk
F s(x)

∣∣∣∣ = O
(

1

|x|d+2

)
, j, k = 1, 2, ..., d.(14)

The estimates (11)-(14) are a refinement of the well known estimate on the rate of decay of F p

and F s given by Theorem 2.6.2 of [5]:

(15) |F s(x)| ≤ C(1 + |x|)1−d,
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with the similar bound on F p. The importance of estimates (11)-(14) for the present work is in that
they guarantee existence of the transversal, longitudinal, and component-wise Radon transforms of
F p and F s, so that

(16) RF = RF p + RF s, D⊥F = D⊥F p +D⊥F s, Dq
kF = Dq

kF
p +Dq

kF
s,

with k = 1, 2, ..., d−1. TransformsWq
kF

p, Wq
kF

s, W⊥k F p, andW⊥k F s cannot be defined, in general.
Indeed, according to definitions (5) and (6), such transforms would require integration of fields F s

and F p multiplied by linear functions in x, over hyperplanes in Rd. Such products decay at infinity
at the rate O(|x|1−d). Such decay is not sufficient for the existence of the integrals.

2.2. Main theorems. The main results of this paper are the following two theorems:

Theorem 2. If an infinitely differentiable vector field F (x) = (F1(x), ..., Fd(x)) satisfies decay con-
ditions (1), its divergence Φ can be reconstructed from the transversal transform D⊥F by applying
the inversion formula (2) as follows

(17) Φ(x) =

[
R−1

(
∂

∂p
D⊥F

)]
(x), x ∈ Rd.

Further, the componentwise Radon transform of F can be reconstructed from D⊥F and weighted
transversal transforms with linear weights W⊥k F , k = 1, .., d− 1, as follows:

(18) [RF ](ω, p) = ω[D⊥F ](ω, p) +
d−1∑
k=1

ωk

(
∂

∂p
[W⊥k F ](ω, p)− [R{(ωk · x)Φ(x)}](ω, p)

)
where (ω, p) ∈ Sd−1 × R, j = 1, 2, ..., d. Finally, field F can be recovered by inverting RF compo-
nentwise:

(19) Fj(x) = R−1 (ej ·RF ) (x), x ∈ Rd, j = 1, 2, ..., d,

where vectors e1,e2, ..., ed form the canonical orthonormal basis in Rd, and where R−1 is understood
as the filtration/backprojection formula (2).

In order to formulate the next theorem, let us denote by Ψ the componentwise Laplacian Ψ of
the solenoidal part of the field F s:

Ψ(x) ≡ (Ψ1(x),Ψ2(x), ...,Ψd(x)), Ψj(x) = ∆F sj (x), x ∈ Rd, j = 1, .., d.

Theorem 3. If an infinitely differentiable vector field F (x) = (F1(x), ..., Fd(x)) satisfies decay
conditions (1), the componentwise Laplacian Ψ of its solenoidal part F s and the Radon transform
of Ψ can be reconstructed from longitudinal transforms Dq

jF , j = 1, ..., d − 1, using the following
formulas:

[RΨ](ω, p) =
∂2

∂p2

d−1∑
j=1

ωj [Dj qF ](ω, p),

Ψj(x) =
[
R−1 (ej ·RΨ)

]
(x), x ∈ Rd, j = 1, 2, ..., d.(20)

Further, the divergence Φ of the field can be reconstructed from the linearly weighted longitudinal
transform Wq

1F and previously found Ψ as follows:

(21) Φ(x) = R−1{R((x · ω1)ω1 ·Ψ(x))− ∂2

∂p2
Wq

1F}, x ∈ Rd,
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where R−1 is understood as the filtration/backprojection formula (2). Finally, filed F is recon-
structed from Φ and Ψ by convolving these functions with G and its gradient:

(22) F (x) = (Φ ∗ ∇G)(x) +

d∑
j=1

ej(Ψj ∗G)(x), x ∈ Rd.

We provide the proofs of theorems (2) and (3) in Sections 3 and 4, respectively. The proof of
theorem (1) can be found in the Appendix.

3. Properties of the transversal transforms and proof of Theorem 2

3.1. Reconstructing the potential part of the field. Most of the material reviewed in the
present section 3.1 is known. However, to make the presentation self-contained, we provide ele-
mentary proofs.

Proposition 4. Suppose F s(x) is a differentiable solenoidal vector field decreasing at infinity at
the rate F s(x) = O

(
|x|−d

)
. Then the transversal Radon transform D⊥F s of F s vanishes:

(23) [D⊥F s](ω, p) = ω · [RF s] (ω, p) = 0, (ω, p) ∈ Sd−1 × R.

Proof. Fix an arbitrary pair (ω, p) ∈ Sd−1×R and the corresponding hyperplane Π(ω, p). Consider
a sphere S(0, R) of radius R centered at the origin. Further, consider the region Υ(R, p) bounded
by a part of S(0, R) and Π(ω, p), and such that the interior normal to the boundary of Υ(R, p) on
Π(ω, p) coincides with ω.

Let us denote by ∂Υ1(R, p) the spherical part of the boundary Υ(R, p), i.e. ∂Υ1(R, p) ≡
∂Υ(R, p) ∩ S(0, R). Since divF s = 0, the following integrals are equal∫

B(0,R)∩Π(ω,p)

F s(x) · ω dAΠ(x) =

∫
∂Υ1(R,p)

F s(x) · n(x) dS(x)

where dS(x) is the standard area element on S(0, R) and n(x) is the exterior normal to the sphere.
Now, let us take the limit R→∞. Due to the fast decrease of F s(x) at infinity, the right hand side in
the above equation converges to 0. The left hand side converges to

∫
Π(ω,p) F (x) ·ω dAΠ(x), proving

that this integral is equal to 0. Since this is true for arbitrary (ω, p), equation (23) follows. �

The corollary below follows immediately from Proposition 4 and Theorem 1.

Corollary 5. Suppose F (x) is a C∞ vector field defined on Rd and decaying at infinity at rates
given by equation (1), and F p + F s are defined by equations (8)-(10). Then

(24) D⊥F = D⊥(F p + F s) = D⊥F p.

Suppose h is a Radon integrable function with a Radon integrable derivative ∂
∂xk

h. Then the

following relation holds [15]:

R
[
∂

∂xk
h

]
=(ek · ω)

∂

∂p
Rh.

This leads to the following Lemma.

Lemma 6. Suppose vector field H(x) = (H1(x), ...,Hd(x)) is differentiable and decays at infinity

at the rate |H(x)| = O
(
|x|−d

)
or faster, with ∂Hk

∂xk
= O

(
|x|−d

)
, k = 1, ..., d. Then

[R( divH)] (ω, p) =
∂

∂p

[
D⊥H

]
(ω, p), (ω, p) ∈ Sd−1 × R.
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Proof. The divergence divH(x) has the rate of decay O
(
|x|−d

)
, justifying the following:

R( divH) =

d∑
k=1

R
(
∂Hk

∂xk

)
=

d∑
k=1

(ek · ω)
∂

∂p
RHk =

∂

∂p
R

d∑
k=1

(ek · ω)Hk

=
∂

∂p
R(ω ·H) =

∂

∂p
(ω ·R(H)) =

∂

∂p
D⊥H,

where equation (7) is used on the second line of equalities. �

In particular for a C∞ field F satisfying the rates of decay (1) we obtain

(25) RΦ =
∂

∂p
D⊥F.

Since Φ is a function from the Schwartz class S(Rd) it can be reconstructed from projections using
the filtered backprojection formula (2), which yields equation (17). The potential part of the field
F p(x) can now be computed by combining (8) and (9):

(26) F p(x) = ∇ (G ∗ Φ) (x) = (Φ ∗ ∇G)(x).

3.2. Reconstructing the whole filed. Due to Proposition 4, the solenoidal part F s of the field F
lies in the null space of the transversal Radon transform D⊥, and therefore, cannot be reconstructed
from the knowledge of D⊥F. Thus, in addition to D⊥F , in this section we assume the knowledge
of the transversal weighted transforms W⊥k F, k = 1, ..., d− 1, defined by (5). This information will
allow us to reconstruct the whole field F and thus to complete the proof of theorem 2

First, for the future use we would like to find projections of RF on the vectors of the basis B.
By combining equations (7) and (24) one observes:

(27) ω · [RF ] (ω, p) =
[
D⊥F p

]
(ω, p), (ω, p) ∈ Sd−1 × R.

Let us find projections of RF on vectors ω1, ..., ωd−1 of the basis B. Note that, due to (4)

ωk · [RF ] = Dq
kF, , k = 1, .., d− 1.

We start with ω1 ·RF p :

ω1 · [RF p](ω, p) = [Dq
1F

p](ω, p) =

∫
Π(ω,p)

ω1 · F p(x) dAΠ(x)

=

∫
R

...

∫
R

∫
R

ω1 · F p(pω + y1ω1 + ...+ yd−1ωd−1) dy1

 dy2... dyd−1

=

∫
R

...

∫
R

∫
R

∂

∂y1
ϕ(pω + y1ω1 + ...+ yd−1ωd−1) dy1

 dy2... dyd−1

=

∫
R

...

∫
R

 lim
a→+∞
b→−∞

ϕ(pω + y1ω1 + ...+ yd−1ωd−1)|y1=a
y1=b

 dy2 ... dyd−1 = 0,

for any (ω, p) ∈ Sd−1 × R. Since the numbering of vectors ω1, ..., ωd−1 in the basis B is arbitrary,
we conclude that

(28) ωk · [RF p](ω, p) = [Dq
kF

p](ω, p) = 0, k = 1, ..., d− 1, (ω, p) ∈ Sd−1 × R.
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In other words, a longitudinal transform of a potential field vanishes. Since basis B is orthonormal,
by combining (28) with (27) one obtains the following formula:

(29) RF p = ω 〈ω ·RF p〉 = ωD⊥F p = ωD⊥F.

Thus, the componentwise Radon transform of the potential part F p of the field F can be easily
recovered from the transversal transform ωD⊥F .

Let us find what information can be extracted from the weighted transversal transformsW⊥k F. It

follows from the definition (5) that W⊥k F = D⊥H(k) where field H(k)(x) is defined as (ωk · x)F (x),
k = 1, 2, ...d − 1. Due to the fast decay of F (x) (see (1)), fields H(k)(x) satisfy conditions of
Lemma 6. Therefore

∂

∂p
W⊥k F =

∂

∂p
D⊥(H(k)) = R( divH(k)) = R(ωk · F p + ωk · F s + (ωk · x)Φ(x))

= ωk ·RF p + ωk ·RF s +R{(ωk · x)Φ(x)}.

Due to (28) term ωk ·RF p vanishes, and one obtains

ωk ·RF s =
∂

∂p
W⊥k F −R{(ωk · x)Φ(x)}, k = 1, ..., d− 1.

These equations combined with (23) determine projections of vector-valued function RF s onto the
vectors of the orthonormal basis B, leading to the following result:

RF s =
d−1∑
k=1

ωk

[
∂

∂p
W⊥k F −R{(ωk · x)Φ(x)}

]
.

By combining the latter formula with equation (29) we arrive at the formula (18) that gives an
explicit expression for [RF ](ω, p). Since field components Fj(x) are functions from the Schwartz
space, formula (2) can be used to reconstruct Fj ’s from components of the vector-valued [RF ](ω, p),
thus yielding equation (19). The proof of Theorem 2 is complete.

4. Properties of longitudinal transforms and proof of Theorem 3

In this section we assume that only longitudinal transforms Dq
jF, j = 1, ..., d − 1, and one of

the weighted longitudinal transforms (e.g., Wq
1F ) are known. Our goal is to reconstruct field F

from these data.

4.1. Reconstructing the solenoidal part of the field.

Proposition 7. Suppose F is a smooth vector field satisfying the decay conditions (1), and F p,
F s are its potential and solenoidal parts, respectively. Then longitudinal transforms Dq

jF
p of F p

vanish, j = 1, ..., d − 1, and the Radon transform of the solenoidal part can be expressed through
Dq
jF as follows:

(30) [RF s](ω, p) =

d−1∑
j=1

ωj [Dq
jF ](ω, p), (ω, p) ∈ Sd−1 × R.

Proof. Using (7) and (29) one obtains

Dq
jF=ωj ·RF = ωj ·R(F p + F s) = ωj · ωD⊥F p + ωj ·RF s = ωj ·RF s = Dq

jF
s,

which implies that all longitudinal transforms of the potential part of a field vanish:

Dq
jF

p=0, j = 1, ..., d− 1.
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Further, by expanding vector RF in basis B and using (7) again see that

RF = (ω ·RF )ω +
d−1∑
j=1

(ωj ·RF )ωj = ωD⊥F +
d−1∑
j=1

ωj Dq
jF.

with

ωD⊥F = ωD⊥FP = RF p and ωj Dq
jF = ωj Dq

jF
s, j = 1, ..., d− 1,

so that (30) holds. �

Equation (30) shows that the longitudinal transforms Dq
jF, j = 1, 2, ..., d − 1, contain enough

information to obtain the componentwise Radon transform of the solenoidal part of the field.
However, a straightforward componentwise application of the inversion formula (2) is not justified in
general, since components of the field F p are not in the Schwartz space. It is known that formula (2)
remains valid for slower decaying functions (see Chapter 1 of [15]). However, reconstruction of
functions decaying at the rate (12) still, in general, cannot be guaranteed. While we conjecture
that inversion formula (2) can be used for componentwise inversion of (30), we will not prove this
statement here. Instead, we notice that by computing the second derivative of equation (30) in p
one obtains the Radon transform of the componentwise Laplacian Ψ of F s:

(31) R (Ψ) =
∂2

∂p2
RF s =

∂2

∂p2

d−1∑
j=1

ωj Dq
jF.

Let us find out the rate of decay of components of Ψ at infinity. Using (10) one obtains

Ψk(x) = ∆F s
k(x) = ∆Fk(x)−∆F p

k (x) = ∆Fk(x)−∆
∂

∂xk
ϕ(x) = ∆Fk(x)− ∂

∂xk
Φ(x)

= ∆Fk(x)− ∂

∂xk
divF (x), k = 1, ..., d.

Since each component of field F belongs to the Schwartz space, so does Ψk(x), k = 1, ..., d. Therefore,
equation (31) can be inverted componentwise using formula (2), thus proving formula (20).

Knowing Ψ, the solenoidal part F s of the field can be recovered as the following convolution:

F s = G ∗Ψ.

4.2. Reconstructing the whole field. In this section we will show that, assuming that Ψ is
known (for example, reconstructed using formula (20)), the divergence Φ of the field can be recon-
structed from the weighted longitudinal transform Wq

1 (F ) using formula (21), and the whole field
F can be obtained as convolutions (22).

As before, we will try to differentiate the weighted transformWq
1F. More precisely, let us evaluate

the following expression:

(ek · ω)
∂

∂p
Wq

1F = (ek · ω)
∂

∂p
R ((x · ω1)(ω1 · F (x)))

= R
(

∂

∂xk
[(x · ω1)(ω1 · F s(x))]

)
+R

(
∂

∂xk
[(x · ω1)(ω1 · F p(x))]

)
(32)

The second term in the right hand side of (32) can be transformed as follows:

R
(

∂

∂xk
[(x · ω1)(ω1 · F p(x))]

)
= R

(
∂

∂xk
[(x · ω1)(ω1 · ∇ϕ(x))]

)
= R ((ek · ω1)(ω1 · ∇ϕ(x))) +R

(
(x · ω1)

∂

∂ω1

∂ϕ(x)

∂xk

)
.(33)
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The first term in the right hand side of (33) can be seen to be equal to (ek ·ω1)Dq
1(F p); it vanishes

as a longitudinal transform of a potential field. The remaining second term in (33) can be simplified
further:

R
(

(x · ω1)
∂

∂ω1

(
∂ϕ(x)

∂xk

))
=

∫
R

...

∫
R

∫
R

y1
∂

∂y1

(
∂ϕ

∂xk
(pω + y1ω1 + ...+ yd−1ωd−1)

)
dy1

 dy2... dyd−1

= −
∫
R

...

∫
R

∫
R

∂

∂xk
ϕ(pω + y1ω1 + ...+ yd−1ωd−1) dy1

 dy2... dyd−1

= −R
(

∂

∂xk
ϕ(x)

)
= −R

(
F p
k

)
,(34)

where integration by parts was performed with respect to y1. By combining (32), (33), and (34)
we thus obtain

(35) (ek · ω)
∂

∂p
Wq

1 (F ) = R
(

∂

∂xk
[(x · ω1)(ω1 · F s(x))]

)
−R

(
F p
k

)
.

Now, let us apply the operator (ek · ω) ∂∂p again, this time to equation (35):

(ek · ω)2 ∂
2

∂p2
Wq

1 (F ) = R
(
∂2

∂x2
k

[(x · ω1)(ω1 · F s(x))]

)
−R

(
∂

∂xk
F p
k

)
.

By summing the above formula in k from 1 to d one obtains

(36)
∂2

∂p2
Wq

1 (F ) = R (∆[(x · ω1)(ω1 · F s(x))])−R (Φ) .

Further, we note that

∆[(x · ω1)(ω1 · F s(x))] = 2ω1 · ∇(ω1 · F s(x)) + (x · ω1)∆[ω1 · F s(x)]

= 2ω1 · ∇(ω1 · F s(x)) + (x · ω1)ω1 ·Ψ(x).

This allows one to simplify the first term in the right hand side of (36) as follows:

R (∆[(x · ω1)(ω1 · F s(x)]) = 2R[ω1 · ∇(ω1 · F s(x))] +R((x · ω1)(ω1 ·Ψ(x)))

= 2Dq
1(∇(ω1 · F s(x)) +R ((x · ω1)(ω1 ·Ψ(x))) = R ((x · ω1)(ω1 ·Ψ(x))) ,(37)

which holds since the longitudinal transform of a potential field Dq
1(∇(ω1 · F s(x)) vanishes. By

combining (36) and (37) we arrive at the following formula

(38) R(Φ) = R ((x · ω1)(ω1 ·Ψ(x)))− ∂2

∂p2
Wq

1(F )

Now the Laplacian Φ of the potential ϕ can be reconstructed by inverting the Radon transform
in (38), yielding the whole field can be reconstructed by computing convolutions (22). This com-
pletes the proof of theorem 3.

5. Vector fields in magnetoacoustoelectric tomography

Our interest in the Radon transforms of vector field is motivated, in part, by an inverse problem
arising in magnetoacoustoelectric tomography (MAET). This imaging modality is a novel coupled-
physics technique designed to image the electrical conductivity of biological objects. It is based
on measurements of electric potential arising in conductive tissues when they move in a magnetic
field. In detail, one places the object of interest in a strong constant magnetic field and illuminates
it with ultrasound pulses [16–20]. Frequently this is done with the object immersed in conductive
saline, which provides good acoustic coupling and facilitates the measurements of the arising electric
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potential with the use of electrodes immersed in the liquid. The said potential results from the
interaction of the vibrational motion of electrons and ions contained in a conductive tissue, with
magnetic field. This generates the Lorentz forces that separate the particles of opposite polarities
and, in turn, results in Ohmic current flowing through the object and the saline. The electric
potential associated with this current is then measured outside of the object, providing the data
for the future MAET reconstruction.

5.1. A traditional data acquisition scheme. In the remaining part of the Section 5 and in
Section 6 we work with the three-dimensional space.

It has been shown ( [20]) that when the tissue with conductivity σ(x) moves with velocity V(t, x)
within magnetic field B, the arising Lorentz force will generate Lorentz currents JL(t, x) given by
the formula

(39) JL(t, x) = σ(x)B×V(t, x).

The vibrational velocity V(t, x) of the tissues arising due to the ultrasound excitation is governed
by the standard wave equation with the speed of sound that can be assumed constant within soft
tissues. Without loss of generality the speed of sound can be set to 1. Then V(t, x) and the acoustic
pressure p(t, x) can be related to the velocity potential ζ(t, x) by equations

V(t, x) =
1

ρ
∇ζ(t, x), p(t, x) =

∂

∂t
ζ(t, x).

Here the density ρ is assumed to be constant within soft tissues and equal to the density of water.
The scalar velocity potential ζ(t, x) itself also satisfies the wave equation in the whole space R3:

∆ζ(t, x) =
∂2

∂t2
ζ(t, x).

The time scales of this model are such that the electromagnetic effects are much faster than
the mechanic motion of the liquid [19]. Therefore, the currents in the system can be considered
stationary, corresponding to velocity V(t, x) at the given time t. Then, it can be shown that the
difference of potentials M(t) measured by a pair of electrodes can be expressed as follows [21]

(40) M(t) =
1

ρ

∫
Ω

ζ(t, x)B ·C(x)dx, C(x) ≡ ∇× I(x),

where the lead current I(x) is the current that would flow through the object in the absence of the
magnetic and acoustic excitation, if a unit potential difference were applied to the electrode pair.
This quantity appears in (40) because I(x) also describes the sensitivity of the measuring system to
a dipole placed at the point x. Finally, the domain Ω in the above equation is the volume occupied
by the saline and by the object immersed in it. Below, it will be convenient for us to consider a
model where Ω is large and can modeled by the whole space R3. A measurement corresponding to
a given acoustic wave ζ(t, x) is, according to (40), a function of one variable. The goal of MAET is,
by using a sufficiently rich set of excitations ζ(t, x), to collect enough information for reconstruction
of the conductivity σ(x) of the tissues.

In the early mathematical work on MAET [21,22] mathematicians would assume that the object
and the electrodes remain fixed and the transducer is moved around the object providing a large
family of excitations ζ(t, x). Then the inverse problem of MAET naturally decouples into two
steps. Since curl C(x) is independent from ζ(t, x), one considers (40) as values of projections of
the quantity B ·C(x) on the complete set of excitations ζ(t, x), and reconstructs B ·C(x). Then,
the second step is to reconstruct the conductivity σ(x) from B ·C(x), possibly from measurements
repeated with two or three different orientations of B. Depending on the waveforms ζ(t, x), the
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Figure 1. The novel MAET scheme; the electrode/transducer assembly rotates
around the object

first step frequently can be reduced to one of the known tomography problems. For example, if one
illuminates the object by ideal plane waves

ζ(t, x) = δ(t− x · ω)

with various directions ω ∈ S2, the resulting measurements can be expressed the Radon transform
of B ·C(x), that can be easily inverted. Similarly, if one assumes an ideal point-like transducer that
produces spherical outgoing waves, the problem reduces to the inverse source problem of thermo-
and photoacoustic tomography, whose solution is well known by now (see, e.g. [23, 24]).

The measuring scheme described above is easy to analyze. However, it does not work well in
practice. Indeed, if electrodes and the object are held in a fixed position, there are very few
directions from which the transducer can send sound waves into the object without illuminating
the electrodes, which generates strong spurious elecrtic pulses that overwhelm the usefull signal.
Thus, researchers are investigating a different approach to data acquisition [25,26], which assumes
that object is rotated while the electrodes are kept stationary. Equivalently, one can keep the
object fixed, and rotate the electrodes and transducer(s). In both cases, the curl C(x) becomes a
function of the object (or electrodes’) position, and the traditional two step reconstruction procedure
described above is not applicable anymore.

5.2. Acquisition scheme with a rotated object. We thus consider here the novel acquisition
scheme for MAET, with a rotating electrode/transducer assembly, as shown in Figure 1. The object
under investigation is immersed in a conductive saline, and the assembly rotates around it. For
simplicity, we model the propagation of currents in this scheme assuming that the electrodes are
placed far away from the object. Here, the conductive medium is presumed to occupy all of R3, with
the conductivity σ(x) being constant and known outside of the support Ω0 of the inhomogeneity,
i.e. σ(x) = σ0 for x ∈ R3\Ω0. Then the lead current I is a function of x and the orientation ν of
the electrodes, i.e. I ≡ Iν(x). We assume that, in the absence of the inhomogeneity, the electrodes
generate field E0

ν = ν. In the presence of inhomogeneity, additional potential uν(x) will arise, so
that the current can be expressed as

(41) Iν(x) = σ(x)(ν +∇uν(x)),

subject to the following condition at infinity:

Iν(x) = σ0E
0
ν + o(1) = σ0ν + o(1) as x→∞.

Due to the absence of sinks and sources of charges in the medium, current Iν(x) is solenoidal. By
setting to zero the divergence of (41) we find that potential uν(x) solves the divergence equation,
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subject to the decay at infinity

∇ · (σ(x)∇uν(x)) = −ν · ∇σ(x), x ∈ R3,(42)

lim
x→∞

uν(x) = 0.(43)

The above simplified model will allow us to express potential uν and current Iν for an arbitrary
orientation ν through three ”basis” solutions. Indeed, let us consider the solutions u(j)(x), j = 1, 2, 3
of (42), (43) corresponding to directions ν = e1, e2, e3, where ej ’s are the canonical vectors in R3:

u(j)(x) ≡ uej (x), j = 1, 2, 3.

The corresponding total currents and their curls will be denoted by I(j)(x) and C(j)(x) respectively:

I(j)(x) = σ(x)(ej +∇u(j)(x)), C(j)(x) = ∇× I(j)(x), j = 1, 2, 3.

Due to the linearity of the problem (42), (43) with respect to the right hand side of (42), for
an arbitrary direction ν the potential uν(x) and current Iν(x) can be represented as the following
linear combinations:

uν(x) =

3∑
j=1

(ej · ν)u(j)(x),

Iν(x) =

3∑
j=1

(ej · ν)I(j)(x) = σ(x)

3∑
j=1

(ej · ν)(ν +∇u(j)(x)) = σ(x)(ν +

3∑
j=1

(ej · ν)∇u(j)(x)).(44)

Let us denote by Cν(x) the curl of the three-dimensional field Iν(x):

Cν(x) = ∇× Iν(x).

Recall that MAET measurements are directly related to B ·Cν(x) (see equation (40)). Let us
assume for now that the transducer is oriented along the vector ω perpendicular to ν, and is
producing ideal plane waves. Then, the corresponding measurements M(ν, ω, t) can be expressed
as

(45) M(ν, ω, t) =
1

ρ

∫
Ω0

δ(t− x · ω)B ·Cν(x)dx.

Here the integration is restricted to Ω0 since the curls C(j)(x) of currents I(j)(x) vanish within any
region with constant conductivity, i.e. outside of Ω0. By combining equations (44) and (45) one
obtains

M(ν, ω, t) =
1

ρ

∫
Ω0

δ(t− x · ω)B ·
3∑
j=1

(ej · ν)C(j)(x)dx =

∫
Ω0

δ(t− x · ω)ν · C(x)dx,

where we introduced the vector field C(x) defined as follows

C(x) =
1

ρ

(
B ·C(1),B ·C(2),B ·C(3)

)
(x).

We thus recognize M(ν, ω, t) as a longitudinal Radon transform of the vector field C(x). If one
directs vector ν to be parallel to one of the vectors ω1 or ω2 orthogonal to ω, measurements
M(ν, ω, t) coincide with the longitudinal transforms

[
Dq
kC
]

(ω, p) defined by equation (4):

M(ωk, ω, t) =
[
Dq
kF
]

(ω, t), k = 1, 2.

If one manages to reconstruct from MAET measurements field C(x), projections of curls B ·C(j)

are easily found:

B ·C(j)(x) = ρej · C(x), j = 1, 2, 3.
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Then, the measurements can be repeated with alternatively directed B, until C(j)’s can be deter-
mined. After that, currents I(j) and conductivity σ(x) can be reconstructed, following the tech-

niques presented in [21,22]. In a simplified two-dimensional setting (as in [25]), curls C(j), j = 1, 2,
are oriented orthogonally to the plane in which currents are flowing, and magnetic induction B is
parallel to C(j)’s. Additional directions of B are not needed in this case.

However, analysis presented in the previous sections of this paper shows that only a solenoidal
part of a vector field C(x) can be reconstructed from known longitudinal transforms Dq

kC, k = 1, 2.
In general, there is no reason to expect that field C(x) is solenoidal. As a way to remedy this
situation, we propose to conduct additional measurements, by illuminating the object with linearly
modulated acoustic waves in the form

(46) ζ(t, x) = (x · ω1)δ(t− x · ω),

with directions ω varying over S2, and ω1 aligned with the electrode directions. Such measurements
N(ω1, ω, t) are described by the formula

N(ω1, ω, t) =
1

ρ

∫
Ω0

(x · ω1)δ(t− x · ω)B ·
3∑
j=1

(ej · ν)C(j)(x)dx =

∫
Ω0

(x · ω1)δ(t− x · ω)(ω1 · C(x))dx;

they can be expressed as the weighted longitudinal transform Wq
1C:

N(ω1, ω, t) =
[
Wq
kC
]

(ω, t).

Theorem 3 states that the vector field C(x) can be reconstructed from its longitudinal transforms
Dq

1C and Dq
2C and weighted longitudinal transform Wq

1C using formulas (20)-(22).
MAET measurements using linearly modulated waves (46) have not been implemented previ-

ously, in part because the benefit of such measurements have not been previously discussed in the
literature. However, there is no physical obstacles for conducting such an experiment. Indeed,
functions in the form (46) are easily seen to satisfy the wave equation. They can be generated in a
number of ways. For example, if a transducer array is used for sound generation (as in [26]), such
waves can be obtained by scaling linearly the excitation voltage along the transducer elements. If
a synthetic flat detector is utilized (as in [25]), one obtains the desired result by a weighted aver-
aging of individual measurements. Such sound waves can also be excited using optically generated
ultrasound [27,28], by using optical excitation with linearly varying intensity.

We will not attempt to simulate a full MAET experiment with linearly modulated sound waves in
this paper, leaving it to the future work. Below we present numerical simulations of reconstruction
of a 3D vector field from its longitudinal transforms Dq

1F , Dq
2F and the weighted longitudinal

transform Wq
1F .

6. Numerical simulations

The goal of this section is to demonstrate the validity of the exact reconstruction formulas (20)-
(22) in a numerical experiment. To this end we picked a smooth phantom F (x) defined in the unit
ball B(1, 0) in R3. Each component Fj(x), j = 1, 2, 3 is a linear combination of a rather arbitrary
collection of shifted radially symmetric functions (”bumps”)

Fj(x) =

Mj∑
k=1

ak,jf
(
x− x(c)

k,j , Rk,j

)
,

f(r,R) =

{ (
1− r2

R

)4
, r < R,

0, r ≥ R,
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F1(x) F2(x) F3(x)

 1.0 -1.0  -0.5  0.5 0.0

Figure 2. Components of vector field F and the gray scale we use throughout the paper

j k xk,j Rk,j ak,j
1 1 (0.2,−.3,−.3) 0.4 1.0
1 2 (−.3,−.3, 0.2) 0.5 1.7
1 3 (−.3,−.3, 0.2) 0.25 −1.7
1 4 (−.3, 0.3,−.3) 0.5 1.5
1 5 (−.3, 0.3,−.3) 0.2 −2.5
2 1 (0.2, 0.2,−.3) 0.5 1.0
2 2 (−.3, 0.3, 0.2) 0.5 1.5
2 3 (−.3, 0.3, 0.2) 0.2 −2.5
2 4 (0.3,−.3, 0.2) 0.5 1.7
2 5 (0.3,−.3, 0.2) 0.25 −1.7
3 1 (−.3,−.3,−.3) 0.45 1.5
3 2 (−.3,−.3,−.3) 0.2 −1.5
3 3 (−.3, .05, .45) 0.4 1.0
3 4 (−.3, .45, .05) 0.4 −1.0
3 5 (.05,−.3, .45) 0.4 −1.0
3 6 (.45,−.3, .05) 0.4 1.0
3 7 (.05, .45,−.3) 0.4 1.0
3 8 (.45, .05,−.3) 0.4 −1.0

Table 1. Values of constants xk,j , Rk,j , and ak,j used in both simulations

where ak,j ’s are weights, and x
(c)
k,j are the centers and Rk,j are the radii of support of the correspond-

ing bumps. For the ease of visualization, all centers x
(c)
k,j were chosen to lie in one of the planes

x1 = −0.3, x2 = −0.3, or x3 = −0.3. Each so defined component Fj is a C3(B(1, 0)) function.
The phantom is shown in Figure 2, and the values of constants xk,j , Rk,j , and ak,j used in our
simulations can be found in Table 1. In addition, M1 = 5, M2 = 5, M3 = 8.

Formulas (5)-(7) show that one can find values of longitudinal transforms Dq
1F , Dq

2F , and Wq
1F

by computing the standard and the linearly weighted Radon transforms of each of the Fj , j = 1, 2, 3.

The latter transforms of the radial bump functions f
(
x− x(c)

k,j , Rk,j

)
are given by the following
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Figure 3. Reconstructed solenoidal and potential parts of the field, F s and F p

formulas that can be obtained by elementary calculations:

[
Rf

(
x− x(c)

k,j , Rk,j

)]
(ω, p) =

π

5
R2
k,j

1−

(
p− ω · x(c)

k,j

)2

R2
k,j


5

, if
∣∣∣p− ω · x(c)

k,j

∣∣∣ < Rk,j , 0 otherwise,

and [
R
{

(ω1 · x)f
(
x− x(c)

k,j , Rk,j

)}]
(ω, p) =

(
ω1 · x(c)

k,j

) [
Rf

(
x− x(c)

k,j , Rk,j

)]
(ω, p).

While our formulas are valid for any choice of orthonormal basis vectors ω1(ω) and ω2(ω), for
numerical simulations we defined these vectors as follows. Vector ω2 was chosen to lie in the
horizontal plane spanned by canonical vectors e1 and e2; it was computed as follows:

ω2(ω) =
ω∗2(ω)

|ω∗2(ω)|
, where ω∗2(ω) = (−(ω · e2), (ω · e1), 0).

The directions of ω were discretized in such a way (see the next paragraph), that the values (0, 0, 1)
and (0, 0,−1) were never used, and the above formula for ω2 was always well defined. Vector ω1(ω)
was computed as the cross-product ω1(ω) = ω × ω2(ω).

The following grid in the variables (ω, p) was used to compute the Radon transforms. Variable
p was discretized using a uniform gird with 257 nodes in the interval [−1, 1]. Vector ω(θ, ϕ) =
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(sinϕ cos θ, sinϕ sin θ, cosϕ) was discretized using a product grid on [0, 2π]× [0, π], with 513 uni-
formly spaced nodes in the variable θ and 256 Gaussian nodes in the variable t = cosϕ. For
simplicity of presentation we did not use the redundancy in the Radon transform to reduce the
required data and the computational complexity. However, in practice it is sufficient to vary ω over
half a sphere and multiply the result by the factor of 2.

The inversion of the classical Radon transform required by equations (20) and (21) was imple-
mented by discretizing the 3D version of the formula (2), with α = 0:

(47) f(x) = [R−1g](x) =
1

8π2

[
R#

(
∂

∂2p
g(ω, p)

)]
(x), x ∈ B(1, 0).

The inversion was computed in the nodes of 257× 257× 257 Cartesian grid in x, for |x| ≤ 1 only.
For our first simulation, the derivatives in p in (21) and in (47) were computed by a spectrally
accurate algorithm, using the Fast Fourier transform (FFT), in order to achieve high accuracy
when processing theoretically exact data. The components of the reconstructed fields F s(x) and
F p(x) are shown in Figure 3 (the gray scale used in the images is the same as in Figure 2). When
added together, these fields produce an accurate approximation to the exact F (x). When plotted
in a grey scale figure (not shown here) the reconstructed F (x) is indistinguishable from the exact
field presented in Figure 2. In this case, the relative L2 error of the reconstruction is 0.09% and the
relative L∞ error does not exceed 0.3%. This is consistent with the exactness of our reconstruction
formulas.

Our second numerical simulation aims to demonstrate the noise sensitivity of formulas (20)-(22).
In the above mentioned equations, functions Φ and Ψj , j = 1, 2, ..., d are reconstructed from the
second derivatives of the data in p. This is followed by convolutions with smoothing kernels in
(22). However, the solenoidal part F s of the field is obtained by convolutions with the fundamental
solution (Ψj ∗G), j = 1, ..., d, whereas the potential part is computed by convolution of Φ with the
gradient ∇G of the fundamental solution. This additional differentiation implies that the potential
part should be more sensitive to high spatial frequencies of the noise.

In order to test this conclusion we added to the data Dq
1F , Dq

2F , and Wq
1F a small normally

distributed spatially uncorrelated noise with relative intensity 0.1% in L2 norm. Spectral differenti-
ation in p in (21) and in (47) was replaced by the standard second order symmetric finite difference
formula. This has a mild regularizing effect compared with the spectral differentiation. The fields
F s(x) and F p(x) reconstructed from the noisy data are shown in Figure 4 (the gray scale used in
this figure is the same as in Figure 2). Comparison with the Figure 3 shows that the solenoidal
part F s(x) is little affected by this mild noise, while reconstructed F p(x) contains much stronger
high frequency artifacts (the reader may want to magnify the figure to see this clearly). Indeed,
a quantitative comparison reveals that the relative error in F s(x) is 1.1% in L2 norm and 1.3% in
L∞ norm. On the other hand, the relative error in F p(x) is 63% in L2 norm and 74% in L∞ norm.

The total reconstructed field is the sum of F s(x) and F p(x). It is depicted in Figure 5 (the gray
scale is the same as in Figure 2). Due to the high level of artifacts in F p(x), the total field also
contains significant error, with the relative error equal to 36% in L2 norm and 41% in L∞ norm.
It should be noted that the high error in F p(x) is a manifestation of the poor conditioning of
the problem of reconstructing the potential part of the field from a linearly weighted longitudinal
transform Wq

1F . Indeed, formula (30) shows that the Radon transform of F s is expressed as a
linear combination of data Dq

2F . Thus, the conditioning of finding F s is similar to conditioning
of inverting the standard scalar Radon transform. On the other hand, in the equation (35) the
Radon transform R

(
F p
k

)
is expressed through the derivative of the data ∂

∂pW
q
1 (F ). This additional

differentiation of data makes the problem of reconstructing F p significantly more ill-posed than that
of inverting the regular Radon transform. This leads to the appearance of strong high frequency
artifacts in the reconstructed F p.
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F s
1(x) F s

2(x) F s
3(x)

F p
1 (x) F p

2 (x) F p
3 (x)

Figure 4. Solenoidal and potential parts of the field, F s and F p, reconstructed
from noisy data

F s
1(x) F s

2(x) F s
3(x)

Figure 5. Field F reconstructed from noisy data

In order to convince the reader that this is indeed a high-frequency phenomenon, we applied a
low-pass linear filter to the total reconstructed field F (x), obtaining a smoothed field F smooth(x).
In detail, each component F smooth

k (x) of F smooth(x) was obtained by applying filter η(ξ) in the
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Fourier domain:
F smooth
k (x) = F−1[η(ξ)[F(Fk)](ξ)](x), k = 1, 2, 3.

where F and F−1 are the forward and inverse Fourier transforms, and filter η(ξ) was given by the
formula

η(ξ) = 0.5

(
1 + cos

π|ξ|
0.4fNyquist

)
for |ξ| < 0.4fNyquist, 0 otherwise,

where fNyquist is the Nyquist frequency of the spatial discretization in x. The relative errors in the
so found approximation F smooth(x) where 12% in L2 norm and 19% in L∞ norm.

We would like to stress that the reconstruction algorithm presented here, based on direct dis-
cretization of our inversion formulas, is meant only to illustrate the exactness of these formulas
(when applied to accurate data), and to demonstrate the increased sensitivity of these formulas
to noise (in comparison to the standard Radon inversion). The development of a more practical,
efficient and robust algorithm is a matter of the future work. Such an algorithm would require a
prudent choice of a regularization technique, to reduce the noise sensitivity. An optimal choice of
such technique depends heavily on the parameters of a particular application, such as the signal-to-
noise ratio, spectral content of the noise, desired resolution, etc. For a general overview of classical
regularization methods we refer the reader to the book [29] and article [30]. The regularization
methods used recently in vector tomography include the singular value decomposition [31], the
method of approximate inverse [32], and an expansion in a series of orthogonal polynomials [12].
These topics, however, are outside of the scope of the present paper.

Appendix

In the present Appendix we prove Theorem 1 that establishes the rates of decay at infinity of
the potential and solenoidal parts of the field, as given by equations (11)-(14).

We will need the following Lemma.

Lemma 8. Consider convolution h of functions f and g defined as follows

(48) h(x) =

∫
Rd

f(y)g(x− y)dy, x ∈ Rd,

If f(x) and g(x) are locally integrable and satisfy the inequalities:

(49) |f(x)| ≤
Cf

(1 + |x|)K
, |g(x)| ≤ Cg

(1 + |x|)M
, K > 0, M ≥ d+K,

then there is a constant C such that convolution h(x) is bounded as follows:

|h(x)| ≤ C

(1 + |x|)K
.

Proof. Note that inequalities (49) imply that g is absolutely integrable over Rd:∫
Rd

|g(y)|dy = A <∞.

For a fixed x, split the integral (48) as follows:

h(x) = IB(x) + IO(x), IB(x) ≡
∫

B(R)

f(y)g(x− y)dy, IO(x) ≡
∫

Rd\B(R)

f(y)g(x− y)dy,

where B(R) is a ball of radius R = |x|/2 centered at the origin. Note that the volume |B(R)| of
the ball is

|B(R)| = CdR
d = 2−dCd|x|d,
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where Cd is the volume of the unit ball in Rd. Obviously, for any y ∈ B(R), |y| ≤ R. Since |x| = 2R,
|x− y| ≥ R, and

|g(x− y)| ≤ Cg
(1 + |x− y|)M

≤ Cg
(1 +R)M

=
2MCg

(2 + |x|)M
.

Therefore, IB can be bounded as follows

(50) |IB| ≤
CgCf |B(R)|

(1 +R)M
=

CgCfCd|x|d

2d−M (2 + |x|)M
≤
CgCfCd(1 + |x|)d

2d−M (1 + |x|)M
≤

CgCfCd
2d−M (1 + |x|)K

.

On the other hand, for y ∈ Rd\B(R), |f(y)| can be bounded by
Cf

(1+R)K
so that the following

inequality holds

(51) |IO| ≤
∫

Rd\B(R)

|f(y)||g(x− y)|dy ≤
Cf

(1 +R)K

∫
Rd

|g(y)|dy ≤ A
2KCf

(2 + |x|)K
≤ A

2KCf
(1 + |x|)K

.

Finally, by combining inequalities (50) and (51) one proves Lemma 8. �

We are ready to prove Theorem 1.

Proof. First, we establish the rate of decay at infinity of the potential ϕ(x) given by the convolu-
tion (8). We note that divergence Φ(x) belongs to the Schwartz space S(Rd) and, therefore, for any
l ≥ 0, there is a constant Cl such that |Φ(x)| ≤ Cl/(1 + |x|l). On the other hand, the derivatives of
the fundamental solution G(x) decay as follows:

(52) |DαG(x)| = O
(

1

|x|d+|α|−2

)
, |α| = 1, 2, 3, 4.

Let us introduce an infinitely smooth nonnegative cut-off function η(t), t ∈ R, with η(t) = 1 for
every t ∈ (−1/2, 1/2) and η(t) = 0 for |t| ≥ 1. Convolution (8) can be re-written as

ϕ(x) = I1(x) + I2(x),

I1(x) ≡
∫

|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy, I2(x) ≡
∫
Rd

Φ(y)G(x− y)(1− η(|x− y|))dy,

The first term I1(x) can be bounded as

|I1(x)| =

∣∣∣∣∣∣∣
∫

|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
|u|<1

Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣ ≤ CG max
|u|<1

|Φ(x− u)|,

where

(53) CG ≡
∫
|u|<1

|G(u)|η(|u|)du.

Then |I1(x)| is bounded by CGCl/(1 + (|x| − 1)l) for any l ≥ 0.
The second term is the following convolution

I2(x) =

∫
Rd

G(x− y)(1− η(|x− y|))∇y · F (y)dy =

∫
Rd

∇x [G(x− y)(1− η(|x− y|))] · F (y)dy

=

d∑
j=1

∫
Rd

∂

∂xj
[G(x− y)(1− η(|x− y|))]Fj(y)dy
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The latter sum is the sum of convolutions of functions satisfying conditions of Lemma 8, where the
role of f is played by Fj with M ≥ 2d − 1 (since Fj ’s are Schwartz functions), and the role of g

is played by ∂
∂xj

[G(x)(1− η(|x|))] with K = d − 1. Therefore, I2(x) has the desired rate of decay

O
(
|x|1−d

)
. This term dominates the sum I1(x) + I2(x) at infinity. This proves equation (11).

The estimate for the derivatives of ϕ(x) can be obtained in a similar way. Indeed

∂

∂xj
ϕ(x) =

∂

∂xj

∫
Rd

Φ(y)G(x− y)dy = I3(x) + I4(x),

where

I3(x) ≡ ∂

∂xj

∫
|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy, I4(x) ≡ ∂

∂xj

∫
Rd

Φ(y)G(x− y)(1− η(|x− y|))dy.

Now

|I3(x)| =

∣∣∣∣∣∣∣
∂

∂xj

∫
|u|<1

Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
|u|<1

∂

∂xj
Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣
≤ CG max

|u|<1

∣∣∣∣ ∂∂xj Φ(x− u)

∣∣∣∣ = CG max
|u|<1

∣∣∣∣∣ ∂∂xj
d∑

k=1

∂

∂xk
Fk(x− u)

∣∣∣∣∣ ,
where CG still given by (53). Since second derivatives of F are Schwartz functions, |I3(x)| decays
faster than any power of 1/|x|. For the term I4(x) we observe:

I4(x) ≡ ∂

∂xj

∫
Rd

Φ(y)G(x− y)(1− η(|x− y|))dy =
∂

∂xj

d∑
j=k

∫
Rd

∂

∂xk
[G(x− y)(1− η(|x− y|))]Fk(y)dy

=
d∑
j=k

∫
Rd

∂2

∂xk∂xj
[G(x− y)(1− η(|x− y|))]Fk(y)dy.

The rate of decay of derivatives ∂2

∂xk∂xj
[G(x− y)(1− η(|x− y|))] coincides with the decay rate

of ∂2

∂xk∂xj
G(x); it is given by (52). Now, the application of Lemma 8 establishes that |I4(x)| =

O
(
|x|−d

)
. This proves (12) for F p. The similar estimate for F s comes from F s(x) = F (x)−F p(x),

where the second term dominates at infinity.
Finally, equations (13) and (14) are proven similarly, by transferring the derivatives onto G(x)

and using (52) with |α| = 3 and |α| = 4, combined with Lemma 8. �
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