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Abstract
We present a new reconstruction algorithm for single-photon emission
computed tomography. The algorithm is based on the Novikov explicit
inversion formula for the attenuated Radon transform with non-uniform
attenuation. Our reconstruction technique can be viewed as a generalization
of both the filtered backprojection algorithm and the Tretiak–Metz algorithm.
We test the performance of the present algorithm in a variety of numerical
experiments. Our numerical examples show that the algorithm is capable
of accurate image reconstruction even in the case of strongly non-uniform
attenuation coefficient, similar to that occurring in a human thorax.

Introduction

Single-photon emission computed tomography (SPECT) is based on measurements of gamma-
rays radiated by trace amounts of a radionuclide injected into a patient. The intensities of
the radiation measured by a spatially collimated gamma-camera are related to values of line
integrals of the radionuclide distribution, with exponential weights representing attenuation
of radiation on its way from a source to the detector. The sought quantity is the radionuclide
distribution; it has to be reconstructed numerically from the measured data. The above-
mentioned exponential weights are determined by a position-dependent attenuation coefficient;
when SPECT is performed in such regions as a human thorax, this dependence cannot be
neglected and has to be accounted for by the reconstruction algorithm. In this paper we present
a new numerical technique, which, being based on the explicit formula recently discovered
by Novikov [1], allows for accurate non-iterative SPECT reconstruction in the presence of
arbitrary realistic attenuation.

The variety of existing SPECT algorithms can be split into a family of analytical
methods [3–9] and a wide class of iterative techniques (see e.g. [13–19]). Some of the iterative
algorithms (such as, for instance, [21–24]) involve evaluation of certain analytic inversion
formulae as a part of the method. The advantage of the iterative techniques lies in their
flexibility, which allows one to treat realistic mathematical models of the measurements, and,
therefore, not only to account for the attenuation of radiation but also to correct for such image
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degradation factors as collimator blurring and photon scattering. The analytic methods in
general, on the other hand, are considerably faster; a wide use of the filtered backprojection
algorithm (FBP) in practical x-ray tomography is explained by the efficiency of this analytic
technique (see [20] for the description of the FBP algorithm). However, to design an analytic
method one needs an explicit inversion formula, which, for realistic mathematical models of
the measurements can be difficult to derive—as it is in the case of SPECT.

First analytic methods for the attenuation correction in SPECT were proposed two decades
ago by Bellini et al [3] and Tretiak and Metz [4]; both algorithms assumed that the attenuation
coefficient was constant inside a patient’s body and that the cross section of the body was
convex. Two more analytic methods were introduced almost a decade later in [5] and [6] (an
algorithm similar to [5] was independently developed in [7, 8]). A scheme generalizing all of
the above-mentioned approaches has been proposed in [9]; a general analytic approach leading
to a variety of reconstruction formulae was given in [10]. Certain extensions to the underlying
assumptions of constant attenuation and convex body were treated in [10] and [11]; in the
former work an inversion formula was derived for the case when attenuation depends on an
observation angle (but is constant for a fixed angle). All of these analytic methods, however,
are not applicable for the SPECT of regions with strongly non-uniform attenuation. Creation
of the analytic SPECT reconstruction algorithm, operative in the case of arbitrary realistic
attenuation coefficient, has become possible only recently, due to the approach developed
in [12], and due to the discovery of an explicit inversion formula for the attenuated Radon
transform by Novikov [1]. (A simpler derivation of a similar formula was given later by
Natterer [2].)

Thus, in this paper we present a new reconstruction algorithm based on the Novikov
explicit inversion formula. Since, as we will show, the Novikov formula can be viewed
as a generalization of both the Radon inversion formula and the Tretiak–Metz formula, the
resulting method contains both the FBP and the Tretiak–Metz scheme (in the cases of zero and
constant attenuation, respectively). We test our algorithm using realistic models of attenuation
and several activity distribution models. As our numerical experiments show, the use of the
explicit inversion scheme allows for accurate non-iterative image reconstruction even within
the regions with strongly non-uniform attenuation distributions, similar to the attenuation
within a human thorax.

The reconstruction technique we present can be used either directly or as an efficient pre-
conditioner for more complicated reconstruction algorithms capable of correcting not only
for effects of non-uniform attenuation but also for other image degradation factors, such as
detector blurring and/or photon scattering.

1. Formulation of the problem

Let f (x) denote the object radionuclide distribution and a(x) be the attenuation coefficient of
the body tissue. As shown in figure 1, the detector measures the intensity of radiation gϕ(p)
emitted in the direction θ(ϕ) along a line defined by its distance p from the origin; the values
of gϕ(p) are given by the following equation:

gϕ(p) ≡ Ra,ϕf =
∫

R

exp (−Dϕa[x + tθ(ϕ)])f (x + tθ(ϕ)) dt, (1)

where the divergent beam transform Dϕa(x) is defined as follows:

Dϕa(x) =
∫ ∞

0
a(x + tθ(ϕ)) dt. (2)
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Figure 1. Data acquisition scheme and coordinate systems.

The integral transform given by equation (1) maps function f (x) into its projections gϕ(p);
this transform is usually referred to as the attenuated Radon transform. We will assume that the
attenuation coefficient is known (in practice it can be obtained, for example, from transmission
measurements as done in [25, 26]). The goal of SPECT is to reconstruct the radionuclide
distribution f (x) from measured projections gϕ(p). The reconstruction algorithm we present
is based on the Novikov explicit inversion formula for the attenuated Radon transform.

2. The Novikov explicit inversion formula

In order to simplify presentation we introduce a rotated coordinate system (s, p) with axes
parallel to vectors θ(ϕ) and θ⊥(ϕ) (see figure 1) so that

s = x cosϕ + y sin ϕ,

p = −x sin ϕ + y cosϕ.

In the new coordinates the integrations defined by equations (1), (2) can be written in a
particularly simple form:

gϕ(p) ≡
∫

R

exp (−D∗
ϕa

∗
ϕ(s, p))f

∗
ϕ (s, p) ds, (3)

D∗
ϕa

∗
ϕ(s, p) =

∫ ∞

s

a∗
ϕ(s

′, p) ds ′, (4)

where f ∗
ϕ (s, p)=f (x(s, p, ϕ)), a∗

ϕ(s, p)=a(x(s, p, ϕ)) and D∗
ϕa

∗
ϕ(s, p)=Dϕa(x(s, p, ϕ)).

The (classical) Radon transform Rϕ of the attenuation coefficient a(x) is defined by the
following equation:

Rϕa(p) =
∫ ∞

−∞
a∗
ϕ(s

′, p) ds ′. (5)

Comparing this expression to (4) one observes that the values ofRϕa(p) coincide with limiting
values of the divergent beam transform Dϕ :

Rϕa(p) = D∗
ϕa

∗
ϕ(−∞, p).

The goal of the SPECT reconstruction is to recover the radionuclide distribution f (x)
from projections gϕ(p). This problem is equivalent to the inversion of the attenuated Radon
transform (1), under the assumption that the attenuation coefficient a(x) is known. The explicit
inversion formula for this transform has been derived recently by Novikov [1]. We present
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the Novikov formula below in a slightly simplified equivalent version that avoids usage of
complex-valued integral transforms:

f (x) = 1

4π

(
∂

∂x2
Bc(x)− ∂

∂x1
Bs(x)

)
, (6)

Bc(x) =
∫ 2π

0
exp (Dϕa(x))mϕ(x · θ⊥(ϕ)) cosϕ dϕ,

Bs(x) =
∫ 2π

0
exp (Dϕa(x))mϕ(x · θ⊥(ϕ)) sin ϕ dϕ,

(7)

where the modified projections mϕ(p) are defined as

mϕ(p) = e−Aϕ(p)[hcϕ(p)H(h
c
ϕ(p)e

Aϕ(p)gϕ(p)) + hsϕ(p)H(h
s
ϕ(p)e

Aϕ(p)gϕ(p))], (8)

the Hilbert transform H of a function ψ(u) is given by the formula

Hψ(u) = 1

π
P

∫
R

ψ(v)

u− v
dv (9)

and

hcϕ(p) = cos (HAϕ(p)),

hsϕ(p) = sin (HAϕ(p)),

Aϕ(p) = 1
2 (Rϕa)(p).

(10)

One can further modify the Novikov formula to a form similar to the Radon or Tretiak–
Metz inversion formulae. Namely, note that the differential operator (− sin ϕ ∂

∂x1
, cosϕ ∂

∂x2
)

is equal to (θ⊥(ϕ) · ∇). Application of this operator to a function in (s, p) coordinates is
equivalent to differentiation in p, so that formulae (6), (7) can be replaced by the formulae

f (x) = 1

4π

∫ 2π

0
Mϕ(x · θ(ϕ),x · θ⊥(ϕ)) dϕ, (11)

Mϕ(s, p) = ∂

∂p
[exp (D∗

ϕa
∗
ϕ(s, p))mϕ(p)]. (12)

3. Relation between the Novikov and Tretiak–Metz inversion formulae

Analysing equations (11), (12) one can easily notice that in the case when attenuation is absent
(i.e. a(x) = 0) the Novikov inversion formula can be reduced to one of the known inversion
formulae for the classical Radon transform (namely, to the formula that involves differentiation
and the Hilbert transform of the projections followed by the backprojection step (see [20])).
In this section we will show that the Novikov formula also contains the known Tretiak–Metz
inversion formula [4] as a particular case.

The formula proposed by Tretiak and Metz allows one to invert the attenuated Radon
transform (1) in the case when the body has a convex cross section and the attenuation coefficient
a(x) is equal to some constant µ inside this cross section. Throughout this section we will
assume that these two conditions hold.

Notice first that, under assumptions we have made, the reconstruction problem can be
re-formulated into a similar problem with the attenuation a(x) = µ supported inside a disc;
we will assume, without loss of generality, that the radius of the disc is equal to unity. Then,
according to the Tretiak–Metz inversion scheme, activity f (x) can be reconstructed as a result
of the following sequence of operations:

(i) pre-multiplication of projections gϕ(p), p ∈ [−1, 1] by the factor eµ
√

1−p2
;
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(ii) filtration of the pre-multiplied projections with the filter w(p) given by the formulae

ŵ(ρ) =
{

0, |ρ| < µ

|ρ|, |ρ| � µ,
ŵ(ρ) = (Fw)(ρ) (13)

where the Fourier transform F of a function u(p) is defined as

û(ρ) = Fu = (2π)−1/2
∫

R1
e−iρpu(p) dp; (14)

(iii) backprojection with the weight e−µ(x·θ(ϕ)) of the filtered projections Gϕ(p) obtained on
the previous step:

f (x) = 1

4π

∫ 2π

0
e−µ(x·θ(ϕ))Gϕ(x · θ⊥(ϕ)) dϕ.

One can readily verify that the factor eAϕ(p) in equation (8) under assumptions of this

section coincides with the function eµ
√

1−p2
utilized in the first step of the Tretiak–Metz

scheme. It is also easy to see that the combination of the factors e−Aϕ(p) from equation (8) and
exp (D∗

ϕa
∗
ϕ(s, p)) from equation (12) does not depend on p, so that (12) can be re-written as

f (x) = 1

4π

∫ 2π

0
e−µ(x·θ(ϕ))

(
∂

∂p
mϕ

)
(x · θ⊥(ϕ)) dϕ.

In other words, the last step of the Novikov inversion scheme coincides with the last step of
the Tretiak–Metz method.

In order to prove the equivalence of the two inversion formulae under the assumptions
of this section, one has to show that the Novikov filtration operator Nu defined according to
equations (8), (12) by the formulae

Nu(p) = ∂

∂p
ϒu(p), (15)

ϒu(p) = hcϕ(p)H(h
c
ϕ(p)u(p)) + hsϕ(p)H(h

s
ϕ(p)u(p)), (16)

with functions hcϕ(p) and hsϕ(p) given by (10), is equivalent to the filtration with the filterw(p)
(see equation (13)) used in the Tretiak–Metz scheme. Let us notice first that the functionAϕ(p)

and its Hilbert transform HAϕ(p) in equation (10) under our assumptions can be evaluated
for values of p in the interval [−1, 1] as follows:

Aϕ(p) =
{
µ

√
1 − p2, |p| � 1

0, |p| > 1,
(17)

HAϕ(p) = µp; (18)

for the proof of (18) see the appendix. Now the operatorϒu(p) can be represented as follows:

ϒu(p) = cos (µp)H(cos (µp)u(p)) + sin (µp)H(sin (µp)u(p))

= 1
2 [eiµpH(e−iµpu(p)) + e−iµpH(eiµpu(p))].

Taking into account that multiplication by the factor eiµp shifts the Fourier transform û(ρ) of
the function u(p) by µ, and that the Hilbert transform H multiplies û(ρ) by (−isignρ), one
sees that the Fourier transformant ϒ̂u(ρ) of the function ϒu(p) is given by

ϒ̂u(ρ) = −i(û+(ρ)− û−(ρ)), (19)

where

û+(ρ) =
{
û(ρ), ρ � µ

0, ρ < µ,
û−(ρ) =

{
û(ρ), ρ � −µ
0, ρ > −µ.

(20)
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Equation (19) allows one to evaluate the Fourier transform N̂u(ρ) of Nu(p); namely, since
differentiation ∂/∂p is equivalent to multiplication of the Fourier transform of a function by
the factor iρ, the transformant N̂u(ρ) is given by the following expression:

N̂u(ρ) = |ρ|(û+(ρ) + û−(ρ)).

Comparing the above equation with the expression for the Tretiak–Metz filter (13) we see that,
under the assumptions of this section, the two formulae are equivalent, i.e. they represent the
same left inverse operator.

4. Reconstruction algorithm

According to equations (8)–(12) one can reconstruct radionuclide distribution f (x) from the
projections gϕ(p) by:

(i) evaluating the divergent beam transform Dϕa(x) and the Radon transform Rϕa(p),
(ii) evaluating the Hilbert transformant of Aϕ(p),

(iii) computing modifying projections mϕ(p) (see equation (8)),
(iv) differentiating the product exp (D∗

ϕa
∗
ϕ(s, p))mϕ(p) in p (see equation (12)) and

(v) backprojecting the result of the differentiation Mϕ(s, p) (see equation (11)).

The reconstruction algorithm we present follows the structure of the inversion formula.
We assume that the data gϕ(p) are discretized uniformly in both radial (p) and angular (ϕ)
variables, i.e. values of gϕi (pj ), i = 1, 2, . . . , nϕ , j = 1, 2, . . . , np, are given, where nϕ is the
number of projections, np is the discretization size of each projection, ϕi = 2π(i − 1)/nϕ ,
pj = −R + )p(j − 1),)p = 2R/(np − 1), and where R is the radius of the image support.
It is also assumed that the attenuation coefficient a(x) is known and given by its values on the
same Cartesian grid on which the image will be reconstructed.

The discretization of the projections suggests natural discretization for most of the involved
functions and integral transforms. In particular, we will approximate backprojection (11) by
the following finite sum:

f (x) ≈ 2π

nϕ

nϕ∑
i=1

Mϕi (x · θ(ϕi),x · θ⊥(ϕi)), i = 1, 2, . . . , nϕ. (21)

Accordingly, we will have to compute values of all other quantities used in the algorithm
corresponding to the values ϕi, i = 1, 2, . . . , nϕ .

4.1. Divergent beam transform

For each given angle ϕi we evaluate the divergent beam transformD∗
ϕa

∗
ϕ(s, p) using integration

in the (s, p) coordinate system, as given by equation (4), for each value ofpj , j = 1, 2, . . . , np.
The integrals are computed using the trapezoidal rule with the step )s = )p. Since the
object’s cross section has a finite support, the integration domain is finite (i.e. [s,

√
R2 − p2]).

Moreover, use of the trapezoidal rule leads to the following recurrence relation:

D∗
ϕa

∗
ϕ(−R + k)s, p) ≈ D∗

ϕa
∗
ϕ(−R + (k + 1))s, p)

+
)s

2
[a∗
ϕ(−R + k)s, p) + a∗

ϕ(−R + (k + 1))s, p)].

This recurrence relation allows us to obtain n2
p values D∗

ϕi
a∗
ϕi
(sk, pj ), j, k = 1, 2, . . . , np, on

the (s, p) grid in O(n2
p) operations, where sk = −R + )s(k − 1). Since the values of the

attenuation coefficient a(x) are given at the nodes of the Cartesian grid in (x, y) coordinates,
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the bilinear interpolation is used to obtain values of a∗
ϕ(s, p) = a(x(s, p, ϕ)) necessary for

the integration in (s, p) coordinates.
Due to the equation (5), after the divergent transform is computed for the current value of

ϕi , we automatically obtain values of Aϕi (pj ), j = 1, 2, . . . , np (see equation (10)); they are
equal simply to 1

2D
∗
ϕi
a∗
ϕi
(s1, pj ).

4.2. Hilbert transform

Having computedAϕi (pj ), j = 1, 2, . . . , np, for a given angle ϕi , one can evaluate the Hilbert
transform ofAϕi (p) as required by (10). The Hilbert transform can be viewed as a convolution
with the kernel 1/(πp); we approximate such a convolution by a discrete convolution with the
kernel represented by the following sequence of values Kj , j = −np, . . . , np:

Kj = 1

π

[
j ln

(
1 − 1

j 2

)
+ ln

j + 1

j − 1

]
, j = 2, . . . , np

K1 = 2

π
ln 2, K0 = 0,

K−j = −Kj, j = −np, . . . , 1.

This sequence can be viewed as values of the approximate kernel 1/(πp) ∗ η(p) at the points
p = pj , where the roof-top function η(p) is defined as

η(p) =



1

)p
(p + 1), −)p � p � 0,

1

)p
(1 − p), 0 � p � )p,

0, |p| > )p.

The use of such a discrete kernel is equivalent to performing a linear interpolation of a function
between values pj followed by exact convolution with the kernel 1/(πp). The convolution
of the kernel 1/(πp) with the function η(p) can also be viewed as a low-frequency filtration
performed with a filter equal to the Fourier transformant η̂(ρ) of η(ρ):

η̂(ρ) =
(

sin (πρ/ρNyquist)

πρ/ρNyquist

)2

where ρNyquist is the Nyquist frequency of the discretization.
As numerical examples of section 5 show, the above-mentioned low-frequency filtration

implicit in our implementation of the Hilbert transform is sufficient to provide stable
reconstruction in the case of low noise-to-signal ratio. When the noise level is high, however,
we employ an additional low-frequency filter Ŵ (ρ) given by

Ŵ (ρ) =
{

1
2 (1 + cos (πρ/ρcut-off)), |ρ| � ρcut-off

0, |ρ| > ρcut-off ,
(22)

where ρcut-off is the cut-off frequency, ρcut-off � ρNyquist.
Thus, the Hilbert transform of a function is evaluated by zero padding the function

(represented by np samples) to 2np samples, followed by the discrete convolution with the
approximate kernel {Kj } performed in the frequency domain using the fast Fourier transform
algorithm (FFT). In addition, when necessary, the Fourier spectrum of the signal is also
multiplied by Ŵ (ρ) in this step of computations. We utilize this implementation of the Hilbert
transform throughout the algorithm to compute values of the functions hcϕi (pj ) and hsϕi (pj ),
and to evaluate the modified projections mϕi (pj ), see equation (8).
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4.3. Differentiation and backprojection

The differentiation of the product exp [D∗
ϕa

∗
ϕ(s, p)]mϕ(p), as required by equation (12) can

be easily performed using finite differences. Indeed, as a result of the previous steps of the
algorithm the values of this product are known at the nodes of Cartesian grid in (s, p) variables.
Various finite-difference expressions can be used here to approximate the derivatives; all results
presented in section 5 were obtained using the following formula [27]:

u′(p) ≈ 1

12)p
[8(u(p + 2)p)− u(p − 2)p))− u(p + )p)− u(p −)p)].

As a result of the differentiation step we obtain values ofMϕi (sk, pj ) at the nodes of the (s, p)
grid.

The final step of the algorithm consists in backprojection of the previously computed
quantity Mϕi (s, p), as required by equation (21), to reconstruct the image f (x). In this step
we utilize, again, the bilinear interpolation, in order to obtain valuesMϕi (x ·θ(ϕi),x ·θ⊥(ϕi))
from known values Mϕi (sk, pj ).

This completes the description of our algorithm. Assuming that the number of projections
nϕ , the number of samples np and the size n of the reconstruction grid are of the same order, i.e.
nϕ ∼ np ∼ n, one can easily conclude that the number of operations required by the present
reconstruction method is equal to O(n3).

5. Numerical examples

5.1. Phantoms

The goal of this section is to demonstrate the ability of the present technique to reconstruct
images in cases of realistic attenuation coefficients, and to test the sensitivity of the algorithm
to noise in the data. To this end the following model radionuclide distributions will be utilized.
The first activity phantom is described by the characteristic function χell(x) of an ellipse with
the axis length ratio 3 : 4, see figure 2(a); this object will be used to test the ability of the
algorithm to reconstruct slowly varying spatial distributions. We will refer to this function as
phantom 1. The second activity model we use, phantom 2, consists of a set of bell-shaped
functions, see figure 2(b). Some of these test objects are defined by characteristic functions of
circles, while the others are given by functions ui(x,xi , ri) of the following form:

ui(x,xi , ri) =
{
(1 − (x − xi )

2/ri
2)2, r � ri

0, r > ri .

This phantom 2 will be used to probe the ability of the algorithm to reproduce smaller details
and fast-varying or discontinuous distributions.

To model the attenuation coefficient we use the following functions. When comparing the
performance of the present algorithm to our version of the Tretiak–Metz scheme, the attenuation
is modelled by the characteristic functionχell(x) of the ellipse (shown in figure 2(a)) multiplied
by a certain constant µ. The value of this constant is chosen so that the optical lengths of the
axes are equal to 3.375 and 4.5. (The optical length is a dimensionless quantity equal to an
integral of the attenuation coefficient along a path—or, in this case, to the product of the axis
length and µ.)

To simulate a realistic strongly non-uniform attenuation coefficient we utilize the phantom
used in [22]. This model imitates an attenuation distribution across a section of a human thorax;
it consists of an ellipsoidal body with axes of length 22.5 and 30 cm, which, in turn, contains
two smaller ellipsoidal regions with axes of length 10 and 8.8 cm, and two circular regions
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(a) (b) (c)

Figure 2. Model distributions: (a) activity phantom 1; (b) activity phantom 2; (c) attenuation
phantom from [22].

of diameter 2.5 cm, see figure 2(c). The smaller ellipsoidal regions simulate lungs, while the
circular regions correspond to bones; attenuation is equal to 0.01 cm−1 within ‘lungs’ and to
0.17 cm−1 within ‘bones’. Attenuation within the rest of the large ellipse is equal to 0.15 cm−1.

The size of the image grid and the dimensions (nϕ, np) of data sets are among the
most important factors determining quality of tomography reconstruction. In our numerical
experiments all images were computed on a 129 × 129 grid; the same discretization step was
used for projection sampling (i.e. np was equal to 129). The number of projections nϕ was
chosen taking into account the following considerations. The (approximately) optimal relation
between the values nϕ and np in the case of transmission tomography is nϕ/np ≈ π/2 (see
e.g. [20]). Unlike transmission tomography, where projections are measured in the angular
range [0, π ], SPECT measurements cover the range of angles from 0 to 2π . One may assume,
therefore, that in SPECT the optimal ratio of nϕ and np is given by

nϕ/np ≈ π.

In order to satisfy this requirement 400 projections were used in all simulations presented
below.

Finally, notice that images presented below were drawn using a linear grey scale, in such
a way that the dark grey colour represents zero (or negative values, if any) and the white colour
corresponds to the maximum value of the reconstructed function.

5.2. Reconstruction in the case of constant attenuation

In this section we test the performance of the algorithm based on the Novikov inversion
formula in the case of constant attenuation. A model attenuation distribution we use is equal to
a constant inside the ellipse shown in figure 2 (see the previous section for the details). Figure 3
shows reconstructions of phantoms 1 and 2 produced by the present algorithm. The computed
images are very close to the originals in this simple case. Our version of the Tretiak–Metz
algorithm also yields good results in this test; the resulting images practically coincide with
those shown in figure 3.

5.3. Reconstruction in the case of non-uniform attenuation

The images presented in this section were reconstructed from attenuated measurements
corresponding to a strongly non-uniform attenuation coefficient as modelled by the phantom
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(a) (b)

Figure 3. Constant-attenuation case: (a) reconstruction of the activity phantom 1; (b) recon-
struction of the activity phantom 2.

(a) (b) (c)

Figure 4. Reconstructions of the activity phantom 1 in the presence of strong non-uniform
attenuation: (a) present method; (b) FBP algorithm; (c) Tretiak–Metz scheme.

(a) (b) (c)

Figure 5. Reconstructions of the activity phantom 2 in the presence of strong non-uniform
attenuation: (a) present method; (b) FBP algorithm; (c) Tretiak–Metz scheme.

utilized in [22] (see figure 2(c) and the description given in section 5.1). We experimented
with both activity phantoms 1 and 2; the results are shown in figures 4 and 5 respectively.

Figures 4(a) and 5(a) show images computed using the Novikov formula. Images obtained
without any attenuation correction (using the FBP algorithm) are presented in figures 4(b)
and 5(b). Finally, figures 4(c) and 5(c) demonstrate results of reconstruction obtained from the
Tretiak–Metz algorithm with constant attenuation coefficient µ set to the value of 0.15 cm−1

(the chosen value of µ is equal to the attenuation coefficient inside the large grey elliptical
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(a) (b) (c)

Figure 6. Reconstructions of the activity phantom 1 from noisy data in the presence of strong
non-uniform attenuation: (a) present method; (b) present method with low-frequency filtration;
(c) un-apodized FBP algorithm.

region shown in figure 2(c)). The versions of the FBP and Tretiak–Metz algorithms we used
here were not apodized, i.e. filtration steps of these methods were performed by computing
the Fourier transform of the (pre-multiplied) projections using the FFT, by multiplying the
transformants by the filters |ρ| or ŵ(ρ) (see equation (13)) respectively and by computing the
inverse FFT.

The computational examples of this section show that the reconstructions obtained
without proper correction for non-uniform attenuation differ significantly from the originals
(cf figures 2(a), (b)); the present algorithm, on the other hand, yields images which are quite
close to the corresponding phantoms used in the simulations.

5.4. Reconstruction from noisy data

We conclude our presentation demonstrating the results of the reconstructions from noisy data,
obtained in the case of strong non-uniform attenuation. The same model functions are used as
in the previous section; in order to simulate quantum noise in the data, the following procedure
was implemented on each data set used.

• The projections were scaled (multiplied by a constant factor) so that the maximum
‘measured’ value in the data set was equal to 50;

• each point value in the data set was then replaced by a random realization of a Poisson
variate with a mean equal to that value.

The L2 intensity of the thus-generated noise was equal to 17.5% for the projections
corresponding to phantom 1, and to 21.9% for the projections resulting from phantom 2.

The sets of images presented in figures 6 and 7 correspond to the activity phantoms 1 and 2
respectively; the projections were generated using the non-uniform attenuation map shown in
figure 2(c). The first images (figures 6(a) and 7(a)) in these two sets were computed using the
present algorithm without additional filtration. Images in figures 6(b) and 7(b) were produced
by our method with application of the low-frequency filter Ŵ (ρ) given by equation (22) with
ρcut−off = ρNyquist/2; this additional filtration was used in order to reduce the magnitude of
the noise-related artifacts. Finally, the last images (figures 6(c) and 7(c)) in both sets were
reconstructed using the un-apodized FBP algorithm.

Analysing images presented in figures 6 and 7 one can observe that:

• the additional low-frequency filtration reduces oscillations in the reconstructed images but
results in certain loss of fine details (cf figures 7(a) and 7(b)),
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(a) (b) (c)

Figure 7. Reconstructions of the activity phantom 2 from noisy data in the presence of strong
non-uniform attenuation: (a) present method; (b) present method with low-frequency filtration;
(c) un-apodized FBP algorithm.

• the un-apodized algorithm based on the Novikov explicit reconstruction formula is
more sensitive to noise in data than the (un-apodized) FBP algorithm (compare
figures 6(a) against (c), and 7(a) against (c)) and

• reconstructions obtained from the FBP algorithm (although less noisy) are inaccurate—as
a result of strong non-uniform attenuation of radiation on its way from sources to the
detector.

To summarize, our numerical results show that the present method based on the Novikov
explicit formula can indeed be used for the accurate inversion of the attenuated Radon transform
in the case of arbitrary realistic attenuation coefficient and moderately noisy data. However, the
possibility of application of the present or similar algorithms to real data (usually containing
an intensive noise component) requires further investigation (certain heuristic approaches
increasing robustness of the algorithm are discussed in [30]).
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Appendix

In this appendix we show that the Hilbert transform HAϕ(p) of the function Aϕ(p) given by
equation (18) is equal to µp for |p| < 1. Thus, we have to evaluate the following integral
(understood in the principal value sense):

HAϕ(p) = 1

π
P

∫ 1

−1

µ
√

1 − v2

p − v
dv

= µ

π
lim
ε→0

[Fp(p − ε)− Fp(−1) + Fp(1)− Fp(p + ε)], (A.1)

where the primitive Fp(v) satisfies the equation

d

dv
Fp(v) =

√
1 − v2

p − v
.



SPECT reconstruction algorithm based on the Novikov formula 305

The explicit expression forFp(v) can be derived by using formulae 2.261, 2.266, 2.267 of [28],
and by taking into account the relation between the inverse hyperbolic tangent and cotangent
4.6.7 of [29]:

Fp(v) = −
√

1 − v2 + p arcsin v +
1√

1 − p2
arccoth u(p, v),

u(p, v) = 1 − pv√
1 − p2

√
1 − v2

, |p| < 1.
(A.2)

Substituting (A.2) into equation (A.1) we obtain

HAϕ(p) = µ

π

[
πp +

1√
1 − p2

lim
ε→0

(arccoth u(p, p − ε)− arccoth u(p, p + ε))

]
= µp +

µ√
1 − p2

lim
ε→0

(arccoth u(p, p − ε)− arccoth u(p, p + ε)). (A.3)

Notice that function u(p, v) is at least twice differentiable on the open unit square ]−1, 1[×]−
1, 1[; for a fixed p function u(p, v) achieves its minimum at the point v = p. Therefore, in a
small neighbourhood of p this function admits the following expansion:

u(p, p + ε) = 1 +
1

2

∂2

∂v2
u(p, p)ε2 + O(ε3).

Combining the above expansion with the equivalent representation for the hyperbolic cotangent

arccoth x = 1

2
ln
x + 1

x − 1

one can show that the limit in (A.3) is equal to zero, which yields the desired result

HAϕ(p) = µp, |p| < 1.
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