
Discrete Fourier transform

We will work with vectors from CM .
Consider set of functions q(k)(θ) = 1√

M
eikθ, k = 0, ...,M − 1 on the interval [0, 2π] (here

i =
√
−1). Let us discretize q(k)(θ) by computing their values at M equidistant points

θj = j∆θ, with step ∆θ = 2π/M. Then the points are

θj =
2πj

M
, j = 0, 1, 2, ..,M − 1,

and each function q(k)(θ) yields a column-vector q(k):

q(k) =
1√
M


exp(0)

exp
(
k 2πi
M

)
exp

(
2k 2πi

M

)
exp

(
3k 2πi

M

)
...

exp
(
(M − 1)k 2πi

M

)

 . (1)

In other words, the jth coordinate of vector q(k) is

q
(k)
j =

1√
M

exp

(
jk

2πi

M

)
.

Proposition 1 Vectors q(k), k = 0, ...,M − 1 form an orthonormal set in CM .

In order to prove this proposition we first prove two lemmas presented below.

Lemma 2 For any k = 0, ...,M − 1,

||q(k)||2 =< q(k), q(k) >= 1.

Prove it, please. (This is a part of a homework).

Lemma 3 Suppose α ∈ C is an M th root of 1, i.e. αM = 1 and α 6= 1. Then

1 + α + ...+ αM−1 = 0.

Prove it, please. (This is a part of a homework).
In order to prove Proposition 1, notice that exp(

(
(k − l)2πi

M

)
is an M th root of 1. Please,

complete the proof of Proposition 1. (Homework).

Proposition 4 Consider a square matrix Q whose columns are vectors q(k), k = 0, ...,M−1.
Then Q is unitary, and, thus

Q−1 = Q∗.

This follows directly from the material of Chapter 2 (Trefethen, Bau, ”Numerical Linear
Algebra”).
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Proposition 5 Any vector v ∈ CM can be represented (uniquely) as the linear combination
of the columns of Q (i.e. vectors q(k), k = 0, ...,M − 1):

v = c0q
(0) + ...+ cM−1q

(M−1) = Q


c0
c1
...

cM−1

 = Q~c

with the coefficients cj obtained by multiplying v with Q−1 = Q∗:

~c = Q∗v.

Alternatively, since rows of Q∗ are the adjoints of the columns of Q:

cj =
(
q(j)
)∗
v =< q(j), v > .

This also follows directly from the material of Chapter 2.

Fast Fourier transform

There exist a Fast Fourier transform (FFT) algorithm (really, a family of algorithms) that
computes matrix vector products Q~c and Q∗v extremely fast. The conventional matrix-
vector multiplication requires O(M2) floating point operations. The FFT computes the
result in O(M lnM) operations. For very large values of M the speed-up is dramatic.

The FFT algorithm is pretty complicated. However, there exist a lot of freely available
high quality implementations of this technique in most computational languages (including
MATLAB, C, Fortran and so on). Many of these routines require the length of the vector
M be a power of 2. However, more advanced techniques also exist that work very well if M
can be represented as a product of small primes (2,3,5, sometimes 7 and 11).

Negative frequencies

In order to use the DFT and FFT as discrete versions of the Fourier series, one needs to
utilize not only the positive but also the negative frequencies. On the interval [0, 2π] let us
consider M functions q(k)(θ) = 1√

M
eikθ with k = −M/2, ...,M/2 − 1 (we assume that M is

an even number). We discretize these functions as before, and obtain vectors q(k) defined by
the formula (1), with k = −M/2, ...,M/2− 1. We notice that

q(k+M) = q(k),

since

q
(k+M)
j =

1√
M

exp

(
j(k +M)

2πi

M

)
=

1√
M

exp

(
jk

2πi

M

)
exp (j2πi)

=
1√
M

exp

(
jk

2πi

M

)
= q

(k)
j .
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Therefore, the set of vectors q(k) with k = −M/2, ...,M/2− 1 actually coincides with the set
of vectors q(k) with k = 0,M − 1 and therefore all the formulas remain valid. In particular,
any vector v ∈ CM can be represented (uniquely) as the linear combination of the columns
of matrix Qnew whose columns are vectors q(k), −M/2, ...,M/2− 1):

v = c−M/2q
(−M/2) + ...+ cM/2−1q

(M/2−1) = Qnew


c−M/2

c1
...

cM/2−1

 = Qnew~cnew

with the coefficients cj obtained by multiplying v with Q−1
1 = Q∗1:

~cnew = Q∗newv,

or
cj =

(
q(j)
)∗
v =< q(j), v >, j = −M/2, ...,M/2− 1.

In order to compute coefficients cj j = −M/2, ...,M/2 − 1 using existing FFT routines
one first computes ~c = Q∗v and then obtains ~cnew by reordering the components, since the
second half of components of ~c = Q∗v represents the higher frequency Fourier coefficients
that are equal to the negative frequencies coefficients stored in the first half of the vector
~cnew. MATLAB has a special routine called FFTSHIFT that does just that.

DFT and trigonometric interpolation

Let us consider an interpolation problem for a function f(θ) defined on [0, 2π]. Suppose we
want to find a trigonometric polynomial

M/2−1∑
k=−M/2

ckq
(k)(θ)

whose values coincide with values of f(θ) at the equispaced points θj = 2πj
M
, j = 0, 1, 2, ..,M−

1. In order to do this one forms a column vector

v =


f(θ1)
f(θ2)
...

f(θM−1)


and solves the linear system

Qnew~cnew = v,

whose solution is
~cnew = Q∗newv.

In other words, DFT solves (exactly) the interpolation problem, and builds the trigonometric
polynomial that equals vj at the points θj.
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It is interesting to understand the connection between the DFT and approximation of a
function f(θ) by the Fourier series. In the latter case the approximating Fourier series can
be written in the form

f(θ) ≈
M/2∑

k=−M/2

akq
(k)(θ),

where coefficients ak are given by the formula

ak =
M

2π

2π∫
0

q(k)(θ)f(θ)dθ, (2)

where the bar over q(k) represents complex conjugation. (The strange factor M appears in
the above equation because we used scaled exponents 1√

M
eikθ instead of traditional eikθ). In

order to understand how ak relates to ck let us assume that one discretizes the integral (2)
using the composite trapezoidal rule with nodes as the points θj = 2πj

M
, j = 0, 1, 2, ..,M,

and quadrature weights equal to the discretization step 2π/M at the internal points. Then

ak ≈
1

2
q(k)(0)f(0) +

1

2
q(k)(2π)f(2π) +

M−1∑
j=1

q(k)(θj)f(θj).

Functions q(k) are periodic, so that q(k)(2π) = q(k)(0). If, in addition, f(θ) is periodic then
the above formula can be re-written as

ak ≈
M−1∑
j=0

q(k)(θj)f(θj) =< q(k), v >= ck.

Therefore, DFT can be used to approximately compute the coefficients of the Fourier series.
Moreover, if f(θ) is periodic and smooth, such an approximation becomes extremely accurate
(the smoother the function, the higher the order of accuracy of the trapezoid rule).
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