Homework \#4

Problem 1

Prove that for a general rectangular matrix A, null (A) is orthogonal to range $\left(A^{*}\right)$ and range (A) is orthogonal to $\operatorname{null}\left(A^{*}\right)$

Problem 2

The proof of Theorem 5.1 is very sketchy. Notice, for example, that the rank of the product $A B$ of two matrices A and B of rank 2 does not have to be of rank 2. Example:

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \operatorname{rank}(A B)=1
$$

Please, give your own proof of Theorem 5.1. You cannot use theorems with larger numbers, i.e. 5.2, 5.3, and so on.

Problems from the textbook:

Problems 6.1, 6.2, 6.3, 6.4(a), 6.5, 7.1
Hint for problem 6.4: do not use the pseudoinverse $A\left(A^{*} A\right)^{-1} A^{*}$.

