Homework \#2

Problem \#1

(Problem \#3, p. 193): Derive the error formula (equation (17)) for Hermite interpolation (aka osculating interpolation) if $f(x)$ is sufficiently differentiable.

Hint: Proceed exactly as in the derivation of the interpolation error and define $F(z)=$ $f(z)-H_{2 n+1}(z)-\omega_{n}^{2}(z) S_{n}(x)$. After the first application of Rolle's theorem, however, $F^{\prime}(z)$ will have $2 n+2$ distinct zeros.

Problem \#2

Let us investigate the connection between the continuous Fourier series

$$
f(x) \approx Q_{M}(x) \equiv \sum_{k=-M}^{M-1} a_{k} e^{i k x}, \quad a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i k x} d x
$$

and the interpolating trigonometric series (with equidistant points)

$$
\begin{align*}
f(x) & \approx S_{n}(x) \equiv \sum_{k=-n}^{n-1} c_{k} e^{i k x}, \quad c_{k}=\frac{1}{2 \pi} \sum_{j=0}^{2 n-1} f\left(x_{j}\right) e^{-i k x_{j}} \Delta x \tag{1}\\
\Delta x & =2 \pi /(2 n), \quad x_{j}=j \Delta x
\end{align*}
$$

1) Prove that the series $S(x)$ indeed yield interpolation, i.e. that $S\left(x_{j}\right)=f\left(x_{j}\right)$.
2) Show that coefficients c_{k} may be viewed as an approximation to a_{k} with the integrals approximated by the trapezoid rule.
3) Show that such a trapezoid rule with $2 n$ points integrates $e^{i m x}$ exactly when integer m is lying within a certain range of values.

Hint: The trapezoid rule with $n+1$ points for a function $h(x)$ on the interval $[a, b]$ is

$$
\int_{a}^{b} h(x) d x \approx \Delta x \sum_{j=1}^{n-1} h(a+j \Delta x)+\frac{\Delta x}{2} h(a)+\frac{\Delta x}{2} h(b), \quad \Delta x=(b-a) / n
$$

4) Let us assume that $f(x)$ is periodic and has $r \geq 3$ continuous periodic derivatives. Then it can be represented by the series $Q(x)=\lim _{M \rightarrow \infty} Q_{M}(x)$. Show that if $f(x)=$ $Q_{M}(x), M \leq n$, then the coefficients c_{k} would coincide with a_{k}, i.e. that the trapezoid rule (1) is exact for such a function.
5) Therefore, all error in the coefficients c_{k} comes from the remainder of the series $Q(x)$, from the terms with $|k|>M$. Estimate the rate of decay of a_{k} and the rate of decay of $\max \left|Q_{M}(x)-f(x)\right|$.
6) Estimate the rate of decay of convergence of $S_{n}(x)$ to $f(x)$, show that max $\mid S_{n}(x)$ $f(x) \left\lvert\, \leq \frac{L}{n^{r-2}}\right.$, as $n \rightarrow \infty$. (This estimate is not sharp, but should be relatively easy to prove).

Problem \#3

Chebyshev polynomials can be obtained by the Gram-Schmidt orthogonalization of monomials $x^{k}, k=0,1,2, .$. , over the interval $[-1,1]$ with a weight $w(x)=\frac{1}{\sqrt{1-x^{2}}}$ (the so obtained polynomials differ from Chebyshev polynomials by constant factors, since Chebyshev polynomials are not normalized to have 2-norm equal to one).

1) Show that by the change of variables $x=\cos \theta$ this process can be reformulated as orthogonalization of the sequence $\cos ^{k} \theta, k=0,1, \ldots$ on the interval $[0, \pi]$ with a constant weight.
2) Prove that $\cos ^{n} \theta=\sum_{k=0}^{n} a_{k} \cos k \theta$ for some a_{k}. (Use Euler's formula?) Finding a_{k} is not needed.
3) Show that as the result of the GS process one obtains functions $c_{k} \cos k \theta, k=$ $0,1,2, \ldots$ Find c_{k} (make them positive).
4) If one goes back to the variable x, the functions we found are proportional to $\cos (k \arccos x)$. Prove that these functions are indeed polynomials.
5) Chebyshev polynomials are defined as $T_{k}(x)=2^{1-k} \cos (k \arccos x), k=0,1,2, \ldots$ Prove the recurrence relation

$$
T_{n+1}(x)=x T_{n}(x)-\frac{1}{4} T_{n-1}(x) .
$$

(Use trigonometry ?)

