Homework #2

Problem #1

(Problem #3, p. 193): Derive the error formula (equation (17)) for Hermite interpolation (aka osculating interpolation) if f(x) is sufficiently differentiable.

Hint: Proceed exactly as in the derivation of the interpolation error and define $F(z) = f(z) - H_{2n+1}(z) - \omega_n^2(z)S_n(x)$. After the first application of Rolle's theorem, however, F'(z) will have 2n + 2 distinct zeros.

Problem #2

Let us investigate the connection between the continuous Fourier series

$$f(x) \approx Q_M(x) \equiv \sum_{k=-M}^{M-1} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx,$$

and the interpolating trigonometric series (with equidistant points)

$$f(x) \approx S_n(x) \equiv \sum_{k=-n}^{n-1} c_k e^{ikx}, \qquad c_k = \frac{1}{2\pi} \sum_{j=0}^{2n-1} f(x_j) e^{-ikx_j} \Delta x, \qquad (1)$$

$$\Delta x = 2\pi/(2n), \qquad x_j = j \Delta x.$$

1) Prove that the series S(x) indeed yield interpolation, i.e. that $S(x_j) = f(x_j)$.

2) Show that coefficients c_k may be viewed as an approximation to a_k with the integrals approximated by the trapezoid rule.

3) Show that such a trapezoid rule with 2n points integrates e^{imx} exactly when integer m is lying within a certain range of values.

Hint: The trapezoid rule with n + 1 points for a function h(x) on the interval [a, b] is

$$\int_{a}^{b} h(x)dx \approx \Delta x \sum_{j=1}^{n-1} h(a+j\Delta x) + \frac{\Delta x}{2}h(a) + \frac{\Delta x}{2}h(b), \qquad \Delta x = (b-a)/n.$$

4) Let us assume that f(x) is periodic and has $r \geq 3$ continuous periodic derivatives. Then it can be represented by the series $Q(x) = \lim_{M \to \infty} Q_M(x)$. Show that if $f(x) = Q_M(x)$, $M \leq n$, then the coefficients c_k would coincide with a_k , i.e. that the trapezoid rule (1) is exact for such a function.

5) Therefore, all error in the coefficients c_k comes from the remainder of the series Q(x), from the terms with |k| > M. Estimate the rate of decay of a_k and the rate of decay of max $|Q_M(x) - f(x)|$.

6) Estimate the rate of decay of convergence of $S_n(x)$ to f(x), show that $\max |S_n(x) - f(x)| \leq \frac{L}{n^{r-2}}$, as $n \to \infty$. (This estimate is not sharp, but should be relatively easy to prove).

Problem #3

Chebyshev polynomials can be obtained by the Gram-Schmidt orthogonalization of monomials x^k , k = 0, 1, 2, ..., over the interval [-1, 1] with a weight $w(x) = \frac{1}{\sqrt{1-x^2}}$ (the so obtained polynomials differ from Chebyshev polynomials by constant factors, since Chebyshev polynomials are not normalized to have 2-norm equal to one).

1) Show that by the change of variables $x = \cos \theta$ this process can be reformulated as orthogonalization of the sequence $\cos^k \theta$, k = 0, 1, ... on the interval $[0, \pi]$ with a constant weight.

2) Prove that $\cos^n \theta = \sum_{k=0}^n a_k \cos k\theta$ for some a_k . (Use Euler's formula?) Finding a_k is not needed.

3) Show that as the result of the GS process one obtains functions $c_k \cos k\theta$, k = 0, 1, 2, ... Find c_k (make them positive).

4) If one goes back to the variable x, the functions we found are proportional to $\cos(k \arccos x)$. Prove that these functions are indeed polynomials.

5) Chebyshev polynomials are defined as $T_k(x) = 2^{1-k} \cos(k \arccos x), \ k = 0, 1, 2, ...$ Prove the recurrence relation

$$T_{n+1}(x) = xT_n(x) - \frac{1}{4}T_{n-1}(x).$$

(Use trigonometry ?)