Homework \#6 (Complete)

Problem \#1

Design an implicit collocation-based two stage Gauss-like method with $c_{1}=1 / 4$ and $c_{2}=3 / 4$. Present your method in the form

$$
\begin{array}{c|c}
c & A \\
\hline & b^{T}
\end{array}
$$

Problem \#2

Problem 4.8(a,b,c), p. 111, (do not forget to justify your answers). Hint for (b): mapping $\frac{1+a z}{1+b z}$ maps y-axis onto a circle.

Problem \#3

Design an Adams-Moulton (implicit) method using uniformly spaced points t_{n}, t_{n-1}, and t_{n-2}, and a BDF method using uniformly spaced points t_{n}, t_{n-1}, t_{n-2}, and t_{n-3}. Since the answers to these problems are well known, you should present details of your computations (otherwise - no credit).

Problem \#4

Find the error in the form $C_{p+1} h^{p} y^{(p+1)}\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right)$ for the second BDF method in the table 5.3. Show all details of your work for full credit. (Find p and C_{p+1}).

Problem \#5

Write a MATLAB program that finds the coefficient C_{l} for any multistep method given by an array of α 's and an array of β 's. Find the error term in the form $\approx C_{p+1} h^{p} y^{(p+1)}\left(t_{n}\right)$ for the first five BDF methods in the table 5.3. (It's enough to find p and C_{p+1} for each method). Hint: Use MATLAB function rats(...) to represent your output as rational numbers.

Problem \#6

Consider the second Adams-Bashforth method (Table 5.1). Analyze its region of absolute stability by considering only real non-positive values of $z=\lambda h$. Assuming that on the real line this region is represented by a single interval, show that the endpoints of this interval are -1 and 0 .

Problem \#7

Consider the second BDF method (Table 5.3). Consider only real non-positive values of $z=\lambda h$, and show that all the roots of the equation

$$
\rho(\xi)=z \sigma(\xi)
$$

converge to 0 in the limit $z \rightarrow-\infty$. Explain, why this implies that the method has the stiff decay property.

