Supplemental notes for Chapter 5

Backward differences

Suppose we want to interpolate values $f(t_{n-1}), \dots f(t_{n-k})$ for some k.

Let us use the Newton interpolation polynomial; use notation $f_{n-j}=f(t_{n-j}),\ j=1,..k$:

$$P(t) \equiv f_{n-1} + [f_{n-1}, f_{n-2}](t - t_{n-1}) + \dots + [f_{n-1}, \dots, f_{n-k}](t - t_{n-1}) \dots (t - t_{n-k+1}).$$

If the points are equispaced (i.e., $t_{n-j}=t_n-hj,\ j=1,..,k$), this can be simplified by introducing backward differences $\nabla^{(i)}f_j$:

$$\nabla^{0} f_{j} \equiv f_{j},$$

$$\nabla^{1} f_{j} \equiv f_{j} - f_{j-1},$$

$$\nabla^{2} f_{j} \equiv \nabla^{1} f_{j} - \nabla^{1} f_{j-1},$$
...
$$\nabla^{i} f_{j} \equiv \nabla^{i} f_{j} - \nabla^{i} f_{j-1},$$
 and so on.

Then

$$P(t) \equiv f_{n-1} + \frac{\nabla^1 f_{n-1}}{1!h} (t - t_{n-1}) + \frac{\nabla^2 f_{n-1}}{2!h^2} (t - t_{n-1}) (t - t_{n-2}) \dots + \frac{\nabla^{k-1} f_{n-1}}{(k-1)!h^{k-1}} (t - t_{n-1}) \dots (t - t_{n-k+1}).$$

Note the formula

$$\nabla^l f_j = \sum_{m=0}^l (-1)^m \begin{pmatrix} l \\ m \end{pmatrix} f_{j-m}, \tag{1}$$

where $\binom{l}{m}$ is the binomial coefficients:

$$\begin{pmatrix} l \\ m \end{pmatrix} = \frac{l(l-1)(l-2)...(l-m+1)}{m!}, \qquad l \ge m; \qquad \begin{pmatrix} l \\ 0 \end{pmatrix} = \begin{pmatrix} l \\ l \end{pmatrix} = 1.$$

This formula can also be extended to non-integer numbers by replacing l with a real number s:

$$\begin{pmatrix} s \\ m \end{pmatrix} = \frac{s(s-1)(s-2)...(s-m+1)}{m!}.$$

Notice that for equispaced points the formula for P(t) can be further simplified by a substitution $s = (t - t_{n-1})/h$. Then

$$P(sh) = f_{n-1} + \nabla^{1} f_{n-1} s + \nabla^{2} f_{n-1} \frac{s(s+1)}{2!} \dots + \nabla^{k-1} f_{n-1} \frac{s(s+1) \dots (s+k-2)}{(k-1)!}$$
(2)

$$= f_{n-1} + (-1)^{1} \nabla^{1} f_{n-1} \begin{pmatrix} -s \\ 1 \end{pmatrix} + (-1)^{2} \nabla^{2} f_{n-1} \begin{pmatrix} -s \\ 2 \end{pmatrix} \dots + (-1)^{(k-1)} \nabla^{k-1} f_{n-1} \begin{pmatrix} -s \\ k-1 \end{pmatrix}$$

$$= \sum_{i=0}^{k-1} (-1)^{i} \nabla^{i} f_{n-1} \begin{pmatrix} -s \\ i \end{pmatrix}.$$
(3)

Formula (2) is convenient for computations by hand. For example, for k=3 we have

$$P(sh) = f_{n-1} + (f_{n-1} - f_{n-2})s + (f_{n-1} - 2f_{n-2} + f_{n-3})\frac{s(s+1)}{2!} + (f_{n-1} - 3f_{n-2} + 3f_{n-3} - f_{n-4})\frac{s(s+1)(s+2)}{3!}.$$

Let us combine formula (2) with (1) (replace l by i and j by n-1):

$$P(sh) = \sum_{i=0}^{k-1} (-1)^i \left[\sum_{m=0}^i (-1)^m \binom{i}{m} f_{n-1-m} \right] \binom{-s}{i}$$
$$= \sum_{m=0}^{k-1} f_{n-(m+1)} (-1)^m \sum_{i=m}^{k-1} (-1)^i \binom{i}{m} \binom{-s}{i}.$$

In the above equation, please note the change in the summation indices when the summation order is interchanged. Let's replace m + 1 by j and, correspondingly, m by j - 1:

$$P(sh) = \sum_{j=1}^{k} f_{n-j}(-1)^{j-1} \sum_{i=j-1}^{k-1} (-1)^{i} \binom{i}{j-1} \binom{-s}{i}.$$

Explicit Adams-Bashforth methods

These methods are obtained by approximating the identity:

$$y_n = y_{n-1} + \int_{t_{n-1}}^{t_n} f(t, y(t)) dt.$$

Now, define $f_{n-j} = f(t_{n-j}, y_{n-j})$, and instead of f(t, y(t)) integrate the interpolating polynomial P(t):

$$\int_{t_{n-1}}^{t_n} f(t, y(t)) dt \approx \int_{t_{n-1}}^{t_n} P(t) dt = h \int_{0}^{1} P(sh) ds$$

$$= \sum_{j=1}^{k} f_{n-j} \left\{ (-1)^{j-1} \sum_{i=j-1}^{k-1} \binom{i}{j-1} \right\} \left[(-1)^{i} \int_{0}^{1} \binom{-s}{i} ds \right].$$

Let us denote the expression in the brackets by γ_i and the expression in the curly braces by β_i :

$$\gamma_i = (-1)^i \int_0^1 \begin{pmatrix} -s \\ i \end{pmatrix} ds,$$

$$\beta_j = (-1)^{j-1} \sum_{i=j-1}^{k-1} \begin{pmatrix} i \\ j-1 \end{pmatrix} \gamma_i.$$

Then the explicit Adams-Bashforth methods are defined by the formula

$$y_n = y_{n-1} + \sum_{j=1}^k \beta_j f_{n-j},$$

with β_j defined above. This recovers formulas given in section 5.1.1, page 129.

Implicit backward differentiation methods (BDF)

These methods are obtained by interpolating approximate values of y(t) (i.e. $y_{n-j} \approx y(t_{n-j})$, j = 0, ..., k) and by differentiating the interpolating polynomial at $t = t_n$. In other words if Q(t) interpolates values y_{n-j} then $Q(t) \approx y(t)$ and

$$Q'(t_n) \approx y'(t_n) = f(t_n, y_n)$$

represents a non-linear equation for finding y_n . The derivative needs to be expressed explicitly through the values of y_{n-j} , j = 0, ..., k.

Let us use backward differences to write

$$Q(t) \equiv y_n + \frac{\nabla^1 y_n}{1!h}(t - t_n) + \frac{\nabla^2 y_n}{2!h^2}(t - t_n)(t - t_{n-1})... + \frac{\nabla^k y_n}{k!h^k}(t - t_n)...(t - t_{n-k+1}).$$

Differentiate in t, evaluate at t_n , notice that

$$\left\{ \frac{d}{dt} [(t - t_n)(t - t_{n-1})...(t - t_{n-m})] \right\} \Big|_{t=t_n}
= \left\{ (t - t_n) \frac{d}{dt} [(t - t_{n-1})...(t - t_{n-m})] \right\} \Big|_{t=t_n} + \left\{ (t - t_{n-1})...(t - t_{n-m})] \right\} \Big|_{t=t_n}
= (t_n - t_{n-1})...(t_n - t_{n-m}).$$

If the points are equispaced

$$(t_n - t_{n-1})...(t_n - t_{n-m}) = m!h^m.$$

Then we obtain

$$Q'(t_n) = \frac{\nabla^1 y_n}{1!h} + \frac{\nabla^2 y_n}{2!h^2}h... + \frac{\nabla^k y_n}{k!h^k}(k-1)!h^{k-1} = \frac{1}{h}\left(\nabla^1 y_n + \frac{\nabla^2 y_n}{2}... + \frac{\nabla^k y_n}{k}\right).$$

Now, we want to equate

$$Q'(t_n) = \frac{1}{h} \left(\nabla^1 y_n + \frac{\nabla^2 y_n}{2} ... + \frac{\nabla^k y_n}{k} \right) = f(t_n, y_n)$$

thus obtaining

$$\sum_{i=1}^{k} \frac{1}{i} \nabla^i y_n = h f(t_n, y_n). \tag{4}$$

This defines an implicit k-step BDF method. To obtain explicit expression for the coefficients, use the formula

$$\nabla^{i} y_{n} = \sum_{m=0}^{i} (-1)^{m} \begin{pmatrix} i \\ m \end{pmatrix} y_{n-m}. \tag{5}$$

If one substitutes (5) into (4) and interchanges the order of summations, then (4) can be re-written in the form

$$\sum_{m=0}^{k} \alpha_m y_{n-m} = h\beta_0 f(t_n, y_n),$$

where coeffficient β_0 is chosen in such a way that $\alpha_0 = 1$.