Supplemental notes for Chapter 5
Backward differences

Suppose we want to interpolate values f(t,_1), ... f(t,_x) for some k.
Let us use the Newton interpolation polynomial; use notation f,,—; = f(t,—;), j =1, ..k:

P(t) = fn—l —+ [fn—la fn_g](t — tn—l) + ...+ [fn—ly ceey fn—k](t — tn_l)...(t - tn—k—‘rl)-

If the points are equispaced (i.e., t,—; =t, — hj, j =1, .., k) , this can be simplified by
introducing backward differences V@ f;:

vofj = f]u
Vlfj = fi— fi-1,
V=V =V,

Vifj = Vifj — Vifj_l, and so on.

Then
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Note the formula
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where ( m > is the binomial coefficients:
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This formula can also be extended to non-integer numbers by replacing [ with a real

number s: ( . ) s(s—1)(s—2)..(s—m+1)
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Notice that for equispaced points the formula for P(t) can be further simplified by a
substitution s = (¢t — t,,_1)/h. Then
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Formula (2) is convenient for computations by hand. For example, for £ = 3 we have
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) with (1) (replace [ by 7 and j by n — 1):
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In the above equation, please note the change in the summation indices when the sum-
mation order is interchanged. Let’s replace m + 1 by j and, correspondingly, m by

Jj—L
esor Eer(,L)(7)

Explicit Adams-Bashforth methods

Let us combine formula
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These methods are obtained by approximating the identity:

Yn = Yn—1 + / f(tay(t))dt

Now, define f,—; = f(t,—;,yn—;), and instead of f(¢,y(¢)) integrate the interpolating
polynomial P(t):
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Let us denote the expression in the brackets by ~; and the expression in the curly braces
by B;:



Then the explicit Adams-Bashforth methods are defined by the formula
k
Yn = Yn—1 + Zﬁjfn—ja
j=1
with §; defined above. This recovers formulas given in section 5.1.1, page 129.

Implicit backward differentiation methods (BDF)

These methods are obtained by interpolating approximate values of y(t) (i.e. y,—; =
y(tn—;), 7 =0,...,k) and by differentiating the interpolating polynomial at ¢ = t,. In
other words if (¢) interpolates values y,,_; then Q(¢) = y(t) and

Q'(tn) = y'(tn) = f(tn, Yn)

represents a non-linear equation for finding y,. The derivative needs to be expressed
explicitly through the values of y,,—;, 7 =0, ..., k.
Let us use backward differences to write
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Differentiate in t, evaluate at t,,, notice that
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If the points are equispaced
(tn —tn1)...(tn — tn—m) = mIn™.

Then we obtain
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Now, we want to equate
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This defines an implicit k-step BDF method. To obtain explicit expression for the
coefficients, use the formula

vy, = §<-1>m () 5)

If one substitutes (5) into (4) and interchanges the order of summations, then (4) can
be re-written in the form

k
Z AOmYn—m = hﬁof(tn, yn)7
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where coeffficient (3 is chosen in such a way that oy = 1.



