Homework #2

Problem #1

Consider set of functions $q^{(k)}(\theta) = \frac{1}{\sqrt{M}}e^{ik\theta}$, k = 0, ..., M - 1 on the interval $[0, 2\pi]$ (here $i = \sqrt{-1}$). Let us discretize $q^{(k)}(\theta)$ by computing their values at M equidistant points $\theta_j = j\Delta\theta$, with step $\Delta\theta = 2\pi/M$. Then the points are

$$\theta_j = \frac{2\pi j}{M}, \quad j = 0, 1, 2, .., M - 1,$$

and each function $q^{(k)}(\theta)$ yields a column-vector $q^{(k)}$:

$$q^{(k)} = \frac{1}{\sqrt{M}} \begin{pmatrix} \exp(0) \\ \exp\left(k\frac{2\pi i}{M}\right) \\ \exp\left(2k\frac{2\pi i}{M}\right) \\ \exp\left(3k\frac{2\pi i}{M}\right) \\ \dots \\ \exp\left((M-1)k\frac{2\pi i}{M}\right) \end{pmatrix}.$$
 (1)

In other words, the j^{th} coordinate of vector $q^{(k)}$ is

$$q_j^{(k)} = \frac{1}{\sqrt{M}} \exp\left(jk\frac{2\pi i}{M}\right)$$

(1) Prove that for any k = 0, ..., M - 1,

$$||q^{(k)}||^2 = \langle q^{(k)}, q^{(k)} \rangle = 1.$$

(2) Suppose $\alpha \in \mathbb{C}$ is an M^{th} root of 1, i.e. $\alpha^M = 1$ and $\alpha \neq 1$. Then

$$1 + \alpha + \dots + \alpha^{M-1} = 0.$$

(3) Prove tha vectors $q^{(k)}$, k = 0, ..., M - 1 form an orthonormal set in \mathbb{C}^M . **Hint:** $\exp((k-l)\frac{2\pi i}{M})$ is an M^{th} root of 1.

Problem #2

Let us investigate the connection between the continuous Fourier series

$$f(x) \approx Q_M(x) \equiv \sum_{k=-M}^{M-1} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx,$$

and the interpolating trigonometric series (with equidistant points)

$$f(x) \approx S_n(x) \equiv \sum_{k=-n}^{n-1} c_k e^{ikx}, \qquad c_k = \frac{1}{2\pi} \sum_{j=0}^{2n-1} f(x_j) e^{-ikx_j} \Delta x, \qquad (2)$$
$$\Delta x = 2\pi/(2n), \qquad x_j = j\Delta x.$$

(1) Prove that the series S(x) indeed yield interpolation, i.e. that $S(x_j) = f(x_j)$.

(2) Show that coefficients c_k may be viewed as an approximation to a_k with the integrals approximated by the trapezoid rule.

(3) Show that such a trapezoid rule with 2n points integrates e^{imx} exactly when integer m is lying within a certain range of values.

Hint: The trapezoid rule with n + 1 points for a function h(x) on the interval [a, b] is

$$\int_{a}^{b} h(x)dx \approx \Delta x \sum_{j=1}^{n-1} h(a+j\Delta x) + \frac{\Delta x}{2}h(a) + \frac{\Delta x}{2}h(b), \qquad \Delta x = (b-a)/n.$$

(4) Let us assume that f(x) is periodic and has $r \ge 3$ continuous periodic derivatives. Then it can be represented by the series $Q(x) = \lim_{M\to\infty} Q_M(x)$. Show that if $f(x) = Q_M(x)$, $M \le n$, then the coefficients c_k would coincide with a_k , i.e. that the trapezoid rule (2) is exact for such a function.

(5) Therefore, all error in the coefficients c_k comes from the remainder of the series Q(x), from the terms with |k| > M. Estimate the rate of decay of a_k and the rate of decay of $\max |Q_M(x) - f(x)|$.

(6) Estimate the rate of decay of convergence of $S_n(x)$ to f(x), show that $\max |S_n(x) - f(x)| \leq \frac{L}{n^{r-2}}$, as $n \to \infty$. (This estimate is not sharp, but should be relatively easy to prove).

Problem #3

(1) Suppose Chebyshev polynomials are defined as $T_k(x) = 2^{1-k} \cos(k \arccos x), k = 0, 1, 2, \dots$ Prove the recurrence relation

$$T_{n+1}(x) = xT_n(x) - \frac{1}{4}T_{n-1}(x).$$

Hint: Trigonometry ?

(2) Prove that functions $T_k(x)$ are indeed polynomials for any k.