Homework \#2

Problem \#1

Consider set of functions $q^{(k)}(\theta)=\frac{1}{\sqrt{M}} e^{i k \theta}, k=0, \ldots, M-1$ on the interval [$0,2 \pi$] (here $i=\sqrt{-1})$. Let us discretize $q^{(k)}(\theta)$ by computing their values at M equidistant points $\theta_{j}=j \Delta \theta$, with step $\Delta \theta=2 \pi / M$. Then the points are

$$
\theta_{j}=\frac{2 \pi j}{M}, \quad j=0,1,2, . ., M-1
$$

and each function $q^{(k)}(\theta)$ yields a column-vector $q^{(k)}$:

$$
q^{(k)}=\frac{1}{\sqrt{M}}\left(\begin{array}{c}
\exp (0) \tag{1}\\
\exp \left(k \frac{2 \pi i}{M}\right) \\
\exp \left(2 k \frac{2 \pi i}{M}\right) \\
\exp \left(3 k \frac{2 i \pi}{M}\right) \\
\cdots \\
\exp \left((M-1) k \frac{2 \pi i}{M}\right)
\end{array}\right)
$$

In other words, the $j^{\text {th }}$ coordinate of vector $q^{(k)}$ is

$$
q_{j}^{(k)}=\frac{1}{\sqrt{M}} \exp \left(j k \frac{2 \pi i}{M}\right) .
$$

(1) Prove that for any $k=0, \ldots, M-1$,

$$
\left\|q^{(k)}\right\|^{2}=<q^{(k)}, q^{(k)}>=1
$$

(2) Suppose $\alpha \in \mathbb{C}$ is an $M^{\text {th }}$ root of 1, i.e. $\alpha^{M}=1$ and $\alpha \neq 1$. Then

$$
1+\alpha+\ldots+\alpha^{M-1}=0
$$

(3) Prove tha vectors $q^{(k)}, k=0, \ldots, M-1$ form an orthonormal set in \mathbb{C}^{M}.

Hint: $\exp \left((k-l) \frac{2 \pi i}{M}\right)$ is an $M^{\text {th }}$ root of 1 .

Problem \#2

Let us investigate the connection between the continuous Fourier series

$$
f(x) \approx Q_{M}(x) \equiv \sum_{k=-M}^{M-1} a_{k} e^{i k x}, \quad a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i k x} d x
$$

and the interpolating trigonometric series (with equidistant points)

$$
\begin{align*}
f(x) & \approx S_{n}(x) \equiv \sum_{k=-n}^{n-1} c_{k} e^{i k x}, \quad c_{k}=\frac{1}{2 \pi} \sum_{j=0}^{2 n-1} f\left(x_{j}\right) e^{-i k x_{j}} \Delta x \tag{2}\\
\Delta x & =2 \pi /(2 n), \quad x_{j}=j \Delta x
\end{align*}
$$

(1) Prove that the series $S(x)$ indeed yield interpolation, i.e. that $S\left(x_{j}\right)=f\left(x_{j}\right)$.
(2) Show that coefficients c_{k} may be viewed as an approximation to a_{k} with the integrals approximated by the trapezoid rule.
(3) Show that such a trapezoid rule with $2 n$ points integrates $e^{i m x}$ exactly when integer m is lying within a certain range of values.

Hint: The trapezoid rule with $n+1$ points for a function $h(x)$ on the interval $[a, b]$ is

$$
\int_{a}^{b} h(x) d x \approx \Delta x \sum_{j=1}^{n-1} h(a+j \Delta x)+\frac{\Delta x}{2} h(a)+\frac{\Delta x}{2} h(b), \quad \Delta x=(b-a) / n
$$

(4) Let us assume that $f(x)$ is periodic and has $r \geq 3$ continuous periodic derivatives. Then it can be represented by the series $Q(x)=\lim _{M \rightarrow \infty} Q_{M}(x)$. Show that if $f(x)=$ $Q_{M}(x), M \leq n$, then the coefficients c_{k} would coincide with a_{k}, i.e. that the trapezoid rule (2) is exact for such a function.
(5) Therefore, all error in the coefficients c_{k} comes from the remainder of the series $Q(x)$, from the terms with $|k|>M$. Estimate the rate of decay of a_{k} and the rate of decay of $\max \left|Q_{M}(x)-f(x)\right|$.
(6) Estimate the rate of decay of convergence of $S_{n}(x)$ to $f(x)$, show that max $\mid S_{n}(x)$ $f(x) \left\lvert\, \leq \frac{L}{n^{r-2}}\right.$, as $n \rightarrow \infty$. (This estimate is not sharp, but should be relatively easy to prove).

Problem \#3

(1) Suppose Chebyshev polynomials are defined as $T_{k}(x)=2^{1-k} \cos (k \arccos x)$, $k=$ $0,1,2, \ldots$ Prove the recurrence relation

$$
T_{n+1}(x)=x T_{n}(x)-\frac{1}{4} T_{n-1}(x) .
$$

Hint: Trigonometry?
(2) Prove that functions $T_{k}(x)$ are indeed polynomials for any k.

