Homework \#6

Problem \#1

Problem 4.1, p. 111.

Problem \#2

Design an implicit collocation-based two stage Gauss-like method with $c_{1}=1 / 4$ and $c_{2}=3 / 4$. Present your method in the form

c	A
	b^{T}

Problem \#3

Problem 4.8(a,b,c), p. 111, (do not forget to justify your answers). Hint for (b): mapping $\frac{1+a z}{1+b z}$ (where $z=x+i y$) maps y-axis onto a circle symmetric with respect to the x-axis. The region Re $z<0$ will be mapped inside the circle.

Problem \#4

Design an Adams-Moulton (implicit) method using uniformly spaced points t_{n}, t_{n-1}, and t_{n-2}, and a BDF method using uniformly spaced points t_{n}, t_{n-1}, t_{n-2}, and t_{n-3}. Since the answers to these problems are well known, you should present details of your computations (otherwise - no credit).

Problem \#5

Find the error in the form $C_{p+1} h^{p} y^{(p+1)}\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right)$ for the second BDF method in the table 5.3. Show all details of your work for full credit. (Find p and C_{p+1}).

Problem \#6

Consider the second Adams-Bashforth method (Table 5.1). Analyze its region of absolute stability by considering only real non-positive values of $z=\lambda h$. Assuming that on the real line this region is represented by a single interval, show that the endpoints of this interval are -1 and 0 .

