Homework #6

Problem #1

Problem 4.1, p. 111.

Problem #2

Design an implicit collocation-based two stage Gauss-like method with $c_1 = 1/4$ and $c_2 = 3/4$. Present your method in the form

$$\begin{array}{c|c} c & A \\ \hline & b^T \end{array}$$

Problem #3

Problem 4.8(a,b,c), p. 111, (do not forget to justify your answers). Hint for (b): mapping $\frac{1+az}{1+bz}$ (where z = x + iy) maps y-axis onto a circle symmetric with respect to the x-axis. The region Re z < 0 will be mapped inside the circle.

Problem #4

Design an Adams-Moulton (implicit) method using uniformly spaced points t_n , t_{n-1} , and t_{n-2} , and a BDF method using uniformly spaced points t_n , t_{n-1} , t_{n-2} , and t_{n-3} . Since the answers to these problems are well known, you should present details of your computations (otherwise - no credit).

Problem #5

Find the error in the form $C_{p+1}h^p y^{(p+1)}(t_n) + \mathcal{O}(h^{p+1})$ for the second BDF method in the table 5.3. Show all details of your work for full credit. (Find p and C_{p+1}).

Problem #6

Consider the second Adams-Bashforth method (Table 5.1). Analyze its region of absolute stability by considering only real non-positive values of $z = \lambda h$. Assuming that on the real line this region is represented by a single interval, show that the endpoints of this interval are -1 and 0.