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ABSTRACT. A relation between Weyl connections and Gaussian thermostats is ex-
posed and exploited.

To Véronique
§1. Introduction.

We consider a class of mechanical dynamical systems with forcing and a ther-
mostating term based on the Gauss’ Least Constraint Principle for nonholonomic
constraints, [G99]. It was originally proposed as a model for systems out of equi-
librium, [HHP87],[GR97],[G99’],[R99].

Let us consider a mechanical system of the form

where ¢, v from R™ are the configuration and velocity coordinates, W = W(q) is
a potential function describing the interactions in the system and E = E(q) is an
external field acting on the system. The total energy H = %1)2 + W does change
because of the effect of the field . We modify the system by applying the Gauss’
Principle to the constraint H = h to obtain the isoenergetic dynamical system

, ) ow (E,v)
(1.1) g=m, v:_8—q+E_ 2 U

with possible singularities where v = 0. In the special case when W = 0 we have
the isokinetic dynamics. The thermostating term in the equations (1.1) is called
the Gaussian thermostat. The numerical discovery, [ECM90] that the Lyapunov
spectrum, at least in the isokinetic case, has the shifted hamiltonian symmetry
raised the issue of the mathematical nature of the equations (1.1).

On every energy level H = h the equations (1.1) define a dynamical system. In
the isokinetic case the change in h is equivalent to the appropriate rescaling of time
and the multiplication of the external field F by a scalar.
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Example 1.2.

Let T? be the flat torus with coordinates (z,y) € R? and E = (a,0) be the
constant vector field on T2. The Gaussian thermostat equations on the energy level
2?2 +9% =1,

z= ayza y = —(I.’i,'y,

can be integrated and we obtain as trajectories translations of the curve

ar = —Incos ay

or the horizontal lines. Assuming that E has an irrational direction on T? we obtain
the following global phase portrait for the isokinetic dynamics. In the unit tangent
bundle ST? = T2 we have two invariant tori A and R with minimal quasiperiodic
motions, A contains the unit vectors in the direction of E and it is a global attractor
and R contains the unit vectors opposite to E and it is a global repellor. It can
be established ([WO00]) that these invariant submanifolds are normally hyperbolic
so that the phase portrait is preserved under perturbations. This example reveals
that Gaussian thermostats, even in the most restricted isokinetic case are not in
general hamiltonian with respect to any symplectic structure. In part of the phase
space they may contract phase volume and hence have no absolutely continuous
invariant measure.

The involution I(q,v) = (g, —v) conjugates the forward and backward in time
dynamics, i.e., the system is reversible. Reversibility is close to the hamiltonian
property, for instance, when accompanied by enough recurrence it can replace sym-
plecticity in KAM theory,[Se98].

Dettmann and Morriss, [DM96], proved the shifted symmetry of the Lyapunov
spectrum, in the case of isokinetic dynamics with a locally potential field E by
exposing the locally hamiltonian nature of the equations. For the system (1.1) with
W =0and E = —%—Z the change of variables

dt
_ U a _ U
p =€ U’ dT € I
brings (1.1) to the form
dg _OH —dp _ OH p Lloavn_ 1o
dr op dr 0q 2 2

Under the same assumptions, Choquard, [Ch97], found a variational principle, also
involving the factor eV which in the physically interesting examples is multivalued,
thus making the whole description only local. Liverani and Wojtkowski, [WL98|,
made the observation that although the form

de/\dq: eV (Zdv/\dq—dU/\ (Zvdq)),

like the coordinate system (p, q) is defined only locally, the globally defined form
w=>Y.dvAdg—dU A (D_vdq) can be used to develop hamiltonian-like formalism.

The three formulations above ([DM96],[Ch97],[WL98]) apply only to isokinetic
dynamics with a locally potential field E = —VU. In [W00] a geometric setup
was proposed that covers all cases, i.e., isoenergetic and isokinetic, with a potential
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§2. Weyl manifolds and W—-flows.

Let us consider a compact n-dimensional riemannian manifold M and its tangent
bundle TM. The metric g will be also denoted by (-,-). For a smooth vector field
E on M the equations of isokinetic dynamics (the Gaussian thermostat) on the
energy level v2 = 1 have the coordinate free form

@_ Dv

2.1 _, Dv
(2.1) at U at

= FE — (E,v)v,

where % denotes the covariant derivative, i.e., % = V, and V is the Levi-Civita
connection. We obtain a flow on the unit tangent bundle SM of M.

Let ¢ be the 1-form associated with the vector field E, i.e., p(-) = (E,-). The
form ¢ and the riemannian metric g define a Weyl structure on M, which is a linear

symmetric connection V given by the formula (cf. [F70])
VxY =VxY + oY)X + o(X)Y — (X,Y)E,

for any vector fields X,Y on M. The Weyl structure is usually introduced on the
basis of the conformal class of g rather than g itself, but in our study we fix the
riemannian metric g, which plays the role of a physical space. If we change the
metric g to § = e 2V g, then the 1-form ¢ is replaced by @ = ¢ + dU. Hence if the
vector field F has a potential, i.e., ¥ = —VU then the Weyl structure coincides
with the Levi-Civita connection of the rescaled metric g.

The defining property of the Weyl connection is that it is a symmetric linear
connection V such that (cf. [F70])

(2.2) Vxg = —2¢(X)g,

for any vector field X on M, which is equivalent to the requirement that the par-
allel transport defined by the linear connection preserves angles. We consider the
geodesics of the Weyl connection. They are given by the equations in TM

dq Dw
2.3 — = — =0
(2:3) ds ~ " Tds ’
where d% = @w. These equations provide geodesics with a distinguished parameter
s defined uniquely up to scale. It follows from (2.2) and (2.3) that % = —p(w)|w|.
Assuming that at the initial point ¢(0) we have |w| = 1 we obtain
| = e~ Jato)

This formula shows that unless the form ¢ is exact we should not expect the geodesic
flow in TM of a Weyl connection to preserve any sphere bundle. We introduce the
flow

ot . SM — SM,

which we call the W-flow for the field E, by parametrizing the geodesics of the
Weyl connection with the arc length given by g. In other words the projection of
a trajectory of ® to M is a geodesic of the Weyl connection, ¢ is the arc length
parameter defined by the metric g and the trajectory itself is the natural lift of the
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Theorem 2.4. The isoenergetic dynamics

D B
da_, DPv_ _gwip- B0,

2, _
(2.5) a0 at 2

on the energy level %vz + W = h, reparametrized by the arc length defines a flow
on SM which coincides with the W—flow for the vector field

m5_—VW+E
- 2(h—-W) "

(We assumed implicitly that v? does not vanish on the energy level set.) In partic-
ular in the isokinetic case on the energy level v2 = 1 we obtain that the equations

(2.1) define the W-flow for the field E itself.

This theorem can be interpreted as a generalization of the Maupertuis met-
ric,[A89]. Indeed, in the case of E = 0 we have

E:%:_v (—%ln(h—W)>’

and hence the Weyl connection for the field E is the Levi-Civita connection for the
Maupertuis metric (h — W)g.
In this formulation it becomes transparent how the isoenergetic case differs from

the isokinetic. In the former case, if E = —VU has a (local) potential, the vector
field £ = % does not have a potential unless dW A dU = 0, i.e., unless W

and U are functionally dependent. It fits well with the result of Bonetto,Cohen
and Pugh [BCP99] that the isoenergetic dynamics does not in general posses the
shifted hamiltonian symmetry of the Lyapunov spectrum. This result implies that
the W—flows for nonpotential vector fields are not in general conformally symplectic
for any choice of the conformally symplectic structure,[WL98|.

§3. Jacobi equations, curvature of Weyl connections and linearizations
of W—flows.

We are interested in studying hyperbolicity of the dynamical system (2.1) on
SM. Since it was revealed to be a modification of the geodesic flow of a connec-
tion, it is natural to check if the Anosov theory of riemannian geodesic flows can be
extended in this direction. The first step in such a study must be the investigation
of linearized equations of (2.1). For riemannian geodesic flows a very useful lin-
earization is furnished by the Jacobi equations. The Jacobi equations are valid not
only for a Levi-Civita connection but for any symmetric connection. To describe
them let us consider a one parameter family of geodesics of the Weyl connection,
i.e., a family of solutions of (2.3) parametrized by the parameter u close to zero,

dq
Q(Sau)aw(sau) = Ea |u| <e

We introduce the Jacobi field
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The Jacobi equations read

1 — = 1T _-_R

where for any tangent vector fields X, Y,
E(X, Y)= §X§y — §Y§X — ﬁ[x,y]

is the curvature tensor of the Weyl connection.
Let us split the vector field 7 = 79 + 71 into the component 7; orthogonal to w
and the component 7y parallel to w. The equations (3.1) can be split accordingly

Dy
ds

Do

ds = _Rs (63 w)wa

(32) = —ﬁa(g,’W)’UJ,

where R, (X,Y) is the antisymmetric and R, (X,Y) the symmetric part of the Weyl
curvature operator R(X,Y) = Ru(X,Y) + R,(X,Y) (R, is called the distance
curvature and R, the direction curvature, cf. [F70]).
We are faced now with two tasks, to derive the linearization of (2.1) from the
equations (3.1) and to study the curvature tensor of the Weyl connection.
Together with the family of Weyl geodesics let us consider the respective family
of trajectories of the W—flow (2.1)

dq
q(t,u),v(t,u) = e lu| <e.

We define again the Jacobi field by ¢ = Z—Z. Letting n = V¢v = V£ we can consider
(&,m) as coordinates in the tangent space of SM, which is described by (v,n) = 0.

Further we replace n with x, the component of 650 orthogonal to v. It can be
calculated that

X =n+(E,v)§—({v)E

and hence we can use (&, x) as linear coordinates in the tangent bundle of SM.
Note that (v,n) = 0 is equivalent to (v,x) = 0 and in these new coordinates the
velocity vector field of the W—flow (2.1) is simply (v,0). Now the linearization of
(2.1) can be written as

D¢ Dx

(33) = x+e®y, 2

dt = _ﬁa(fa ’U)’U + QO(U)X

We will rewrite the equations (3.3) as ordinary linear differential equations with
time dependent coeflicients. To achieve that we need to choose frames in the tangent
spaces of M along the trajectory where we linearize the W-flow. The Weyl parallel
transport along a path is a conformal linear mapping and the coefficient of dilation
is equal to e~/ ?. We choose an orthonormal frame v, eq,...,€e,_1 in an initial
tangent space Ty, M and parallel transport it along a trajectory of our W-flow in
the direction v € SM. We obtain the orthogonal frames which we normalize by the
coefficient e/ ¥ and denote them by v(t), eq(t),...,en_1(t). Let (0,81, En—1)
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Let further £ = (&1,...,6n—1) € R* ! and ¥ = (x1,-..,Xn-1) € R*"1. The
equations (3.3) will read then

B9 Do),

dé _
dt

~ _  dx ~
—PE+R, o= —RE

where the operator RE = ﬁa(& v)v € R*! (the vector ]?{a(ﬁ,v)v, being orthog-
onal to v, is considered as an element in R*~! by the expansion in the basis
ei(t),...,en—1(t)). Note that ﬁa(ﬁ,v)v and ¢(¢ — (£,v)v) depend ¢ € R*~! alone.

The linearized equations (3.4) for (£,%) differ from the Jacobi equations in the
riemannian case by the presence of the “nonconservative” term —go(v)g in the first
equation and the properties of the operator R, which although defined analogously
in terms of the curvature tensor is not in general symmetric. The curvature tensor
can be calculated directly, [W00], but the result is somewhat cumbersome. However
the sectional curvatures K (IT) of the Weyl connection in the direction of a plane II
defined as

~

K(IT) = (R, (X, Y)Y, X),

for any orthonormal basis {X, Y} of II, are pleasantly transparent
(3.5) K@) = K(I) — E? — divyE,

where K(II) is the riemannian sectional curvature in the direction of II, the vec-
tor field E, is the component of E orthogonal to II and divnE = (VxE, X) +
(Vy E,Y), the partial divergence of the vector field E, i.e., the exponential rate of
growth of the area in the direction IT under the flow in M of the vector field F.

There is a problem with this sectional curvature. It does not depend on the Weyl
connection alone, it is also effected by the choice of the riemannian metric g in the
conformal class. However the sign of sectional curvatures is well defined.

If M is 2-dimensional then E;, = 0. Moreover on a compact manifold M with a
Weyl connection there is a unique metric in the conformal class, called the Gaudu-
chon gauge, [Ga84], such that the vector field E is divergence free. We obtain that
in dimension 2 the curvature of a Weyl connection with respect to the Gauduchon
gauge is equal to the gaussian curvature of the Gauduchon gauge.

Let us summarize our discussion. We have a workable linearization (3.4) of the
dynamical system (2.1) and a geometric tool (the sectional Weyl curvature (3.5)) to
describe its properties. We are ready to draw conclusions about hyperbolic prop-
erties of the W-flows under the assumption of negative Weyl sectional curvature.

4. Hyperbolic properties of W—flows.

We obtain the information about hyperbolicity of W—flows studying the qua-
dratic form J in the tangent spaces of the phase space SM, defined by J(&,x) =
(&, x). The form J factors naturally to the quotient bundle (the quotient by the
span of the vector field (2.1), i.e., in the (&, x) coordinates the quotient by the span
of (v,0)). The quotient space can be represented by the subspace (£,v) = 0, but
this subspace is not invariant under the linearization (3.4) of the flow. The form
J in the quotient space is nondegenerate and it has equal positive and negative

LA B A
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We take the Lie derivative of J and obtain

~

(4.1) ST =3 )T - RMe,

where II is the plane spanned by v and £. Because of the middle term, which is
absent in the riemannian case, the negativity of the sectional curvature does not
guarantee that (4.1) is positive definite. However it does have a weaker property
that it is positive where J = 0. We call a flow with this property strictly J-
separated,[WO01]. A strictly J-separated flow has a dominated splitting, [M84], i.e.,
it has a continuous splitting into “weakly stable” and “weakly unstable” subspaces
on which the rates of growth are uniformly separated, but which are not neces-
sarily decay and growth respectively. For example the dominated splitting allows
exponential growth in the “weakly stable” subspace, but then all of the “weakly
unstable” subspace grows with a bigger exponent. It needs to be stressed that
the splitting is done in the quotient space, because in contrast to the riemann-
ian/contact case we do not have a priori any invariant subspaces transversal to the
flow direction.

It turns out that negative sectional Weyl curvatures guarantee even more hyper-
bolicity.

Theorem 4.2. If the sectional curvatures of the Weyl structure are negative every-
where in M then the W—flow s strictly J -separated and hence it has the dominated
splitting into the invariant subspaces ET and £~. Moreover there is uniform ez-
ponential growth of volume on €T and uniform exponential decay of volume on
E.

Corollary 4.3. If the sectional curvatures of the Weyl structure are negative ev-
erywhere in M then for any ergodic invariant measure of the W—flow the largest
Lyapunov exponent is positive and the smallest Lyapunov exponent is negative.

We can apply this corollary to an individual periodic orbit and we obtain linear
instability. Moreover there are also no repelling periodic orbits under the assump-
tion of negative sectional Weyl curvature.

The 2-dimensional case is special. We have

Theorem 4.4. For a 2-dimensional compact surface M if the curvature of the
Weyl structure is negative, i.e, K = K — divE < 0 on M, then the W-flow is a
transitive Anosov flow.

For a locally potential vector field divE = —AU and we get

Corollary 4.5. If K < —AU on a 2-dimensional surface M then the W-flow is a
transitive Anosov flow.

Corollary 4.6. If the local potential is harmonic and the Gaussian curvature K <
0 on M then the W—flow is a transitive Anosov flow.

We conclude that in the case of fields given by automorphic forms on surfaces of
constant negative curvature, which were studied by Bonetto, Gentile and Mastropi-
etro, [BGMOO], the flow is always Anosov. Further it follows from the theory of
SRB measures that if such a flow is Anosov then it is also automatically dissipative,
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Note that in this situation we can multiply the vector field E by an arbitrary
scalar A and we still get a transitive Anosov flow. It would be interesting to under-
stand the asymptotics of the SRB measure as A — oo. Is the limit supported on
the union of the integral curves of E7 Let us stress that this scenario differs from
the perturbative conditions in [Go97], [Gr99], [W00’], where the geodesic curvature
of the trajectories cannot be too large. Our trajectories may have arbitrarily large
geodesic curvatures and yet they form a transitive Anosov flow.

5. Examples, extensions, open problems and disappointments.

A. In view of Theorems 4.2 and 4.4 it is natural to ask, if the negative sectional
Weyl curvature is enough to guarantee the Anosov property for the W—flow. It
follows immediately from (4.1) and (3.5) that if for every plane II the sectional
Weyl curvatures satisfy

~ 1 1 5
K(TI) + Z(E2 — E?) = K(II) — divp E + ZE2 - ZEi <0,
then the W—flow is Anosov. We propose

Conjecture 5.1. There are manifolds of dimension > 3 and tangent vector fields
E such that the Weyl sectional curvatures are negative everywhere but the W—flow
s not Anosov.

It is also plausible that under the assumption of negative sectional curvatures
we can obtain W—flows which are nontransitive Anosov flows, as in the examples
of Franks and Williams, [FW80].

To resolve these issues we would like to construct examples of Weyl manifolds
with negative sectional curvatures which are not small deformations of riemannian
metrics of negative sectional curvature. In that direction we found some obstruc-
tions.

Proposition 5.2. There are no Weyl structures with negative sectional curvatures
in a small neighborhood of the homogeneous Weyl structure on an n-dimensional
torus (as in Example 1.2).

Conjecture 5.3. There are no Weyl structures of negative sectional curvature on
n-dimensional tori.

It is so for n = 2 since for 2-dimensional manifolds the Weyl curvature is equal
to the gaussian curvature of the Gauduchon gauge.

The presence of a negative term in the formula for the Weyl sectional curvature
(3.5) gives the impression that it is easier to find manifolds with negative Weyl
curvature than with negative riemannian curvature. The following two observations
suggest that it is not necessarily so.

If (M;, g;, E;),i = 1,2 are two Weyl manifolds then their cartesian product has
a natural Weyl structure, and the Weyl sectional curvature in the direction of the
plane spanned by (E1,0) and (0, E3) is either mixed (positive, negative and zero)
or always zero (iff |E;| = const,i = 1,2). Hence just like in the riemannian case,
product manifolds cannot have negative sectional curvature.

Secondly, if we look for interesting homogeneous Weyl structures we are con-
fronted with the phenomenon that on symmetric spaces of noncompact type, [H78],
there are no homogeneous Weyl structures at all (except for the riemannian met-
ric itself). The only simply connected homogeneous riemannian manifolds with a
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Conjecture 5.4. The only simply connected homogeneous Weyl manifolds with a
compact factor and negative Weyl sectional curvatures are riemannian symmetric
spaces.

We obtain a homogeneous Weyl manifold by taking a left invariant metric g on
a Lie group and a left invariant vector field E. It is known that on unimodular
Lie groups the only left invariant metrics with nonpositive riemannian sectional
curvature are metrics with zero curvature, [AW76],[M76]. In contrast, by (3.5)
the n-dimensional torus, n > 3, with a constant vector field F has negative Weyl
sectional curvature in the direction of any plane except for the planes that contain
E, where it vanishes.

Another instructive example is the 3-dimensional Lie group SOL,[T98|, which
has mixed riemannian sectional curvatures, but for one of the left invariant fields
the Weyl sectional curvature is nonpositive, with some negative curvature.

A weaker version of Conjecture 5.4 is

Conjecture 5.5. There are no left invariant Weyl structures with negative Weyl
sectional curvatures on unimodular Lie groups.

B. Billiard systems are a natural extension of geodesic flows. Similarly we can
consider billard W-flows on Weyl manifolds with boundaries by augmenting the
continuous time dynamics with elastic reflections in the boundaries. For example
we can remove from a Weyl manifold some subsets (“obstacles”). In case of convex
obstacles in a cube (or a flat torus), we obtain Sinai billiards, which have good
statistical properties.

We can introduce Weyl strict convexity of the obstacles by requiring that the
Weyl geodesics in the exterior of the obstacle can have locally at most one point
in common with the obstacle. It can be calculated that this property has the
following infinitesimal description. Let N be the field of unit vectors orthogonal
to the obstacle and pointing out of it. The riemannian convexity of the obstacle
at a point is defined by the positive definiteness of the riemannian shape operator
K& = V¢, N, where { is from the tangent subspace to the obstacle. Similarly we
introduce the operator

(5.6) K&y = K& + (N, E)&,

which is the orthogonal projection of the ” Weyl shape operator” ﬁgoN to the

tangent subspace. An obstacle is (strictly) Weyl convex if K is positive (definite)
semidefinite.

Assuming that the obstacles are Weyl convex we obtain hyperbolic properties of
the billiard W—flows, [W00], in parallel with Section 4.

Two dimensional Lorentz gas with round scatterers of radius r, a constant elec-
tric field £ and the Gaussian thermostat is a model of this kind. It was studied
numerically by Moran and Hoover, [MH87|. Chernov et al,|[CELS92], obtained ex-
austive rigorous results about its SRB measures in the case of small fields and finite
horizon. We can prove the uniform hyperbolicity of the model when 7|E| < 1 and
this inequality is sharp. Indeed, the exponential map F(z) = elPlz takes the tra-
jectories of the W—flow onto the straight lines and being conformal it respects the
reflections from the boundary. Hence the mapping F' takes the billiard W-flow into
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of the logarithm). However the image of a disk of radius r under the exponential
mapping is strictly convex if and only if 7|E| < 1. Once the obstacles loose con-
vexity we readily find elliptic periodic orbits which rules out global hyperbolicity,
[W00].

C. For obscure reasons in hamiltonian systems of many particles interacting by
a pair potential, which are expected to have in general good statistical properties
(and do have them in numerical experiments), hyperbolicity in all of the phase space
is rarely encountered. The notable exceptions are the Boltzmann-Sinai gas of hard
spheres,[S00], and also the one dimensional systems of falling balls, [W98],[W99].
In particular, beyond the 2 dimensional examples of Knauf, [K88],(which have Weyl
counterparts, [W00]), we do not know of systems equivalent to geodesic flows on
manifolds with negative sectional curvatures.

For systems of particles in an external field the Gaussian thermostat provides
additional interactions and the resulting system is not hamiltonian. Examining the
simplest examples we find that also in this case the zero and positive Weyl sectional
curvatures are common.

For noninteracting particles we get a cartesian product of Weyl manifolds and
hence we get zero sectional curvature in some directions, as in A.

When we consider the system of two elastic disks in the 2-dimensional torus, the
cylinders that are cut out from the four dimensional configuration space are Weyl
convex, but the zero Weyl curvature is enough to allow the presence of local simple
attractors of the type of Example 1.2, which rules out global fast mixing and decay
of correlations.

For the Lorentz gas of two noninteracting point particles in a 2 dimensional torus
with round scaterrers, an external field and the Gaussian thermostat, the calcula-
tion of (5.6) shows that the obstacles (products of disks) in the four dimensional
torus of configurations are not Weyl convex everywhere.

These examples indicate that in the setup of Weyl geometry there is no more
freedom for the occurence of global hyperbolicity then in the riemannian realm.
The difficulty in constructing natural examples satisfying the Chaotic Hypothesis
of Gallavotti,[G01], seems to be parallel to the scarcity of multidimensional hamil-
tonian systems with strong mixing properties, [L00].
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