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RIGIDITY OF SOME WEYL MANIFOLDS WITH
NONPOSITIVE SECTIONAL CURVATURE

MACIEJ P. WOJTKOWSKI

ABSTRACT. We provide a list of all locally metric Weyl connections with non-
positive sectional curvatures on two types of manifolds, n-dimensional tori T™
and M™ = S! x S”~! with the standard conformal structures. For M" we
prove that it carries no other Weyl connections with nonpositive sectional cur-
vatures, locally metric or not. In the case of T™ we prove the same in the more
narrow class of integrable connections.

1. WEYL CONNECTIONS WITH NONPOSITIVE SECTIONAL CURVATURES

Geodesic flows of Weyl connections (W-flows) are models of thermostatted sys-
tems under the action of an external field, [GR], [R],[W1]. Negative sectional curva-
ture can be naturally defined for Weyl connections and it leads to some hyperbolic
properties of the W-flow, [W1]. In the search for homogeneous Weyl manifolds with
nonpositive sectional curvature one encounters rigidity phenomena similar to the
riemannian case,|AW],[W2] .

On a riemannian manifold (M™, g) one gets a Weyl connection for every 1-form
. A defining property of the Weyl connection is that it is a symmetric linear
connection V such that ﬁxg = —2¢(X)g, [F]. For a given 1-form ¢ the Weyl
connection is equal to

(1.1) VxY =VxY 4+ o(Y)X + ¢(X)Y — (X,Y)E,

for any tangent vector fields X,Y on M, where V is the Levi-Civita (riemannian)
connection of g, F is the tangent vector field dual to ¢ and (-, -) denotes the metric g.
A pair (g, ) defines the same Weyl connection as the pair (e"2V g, ¢ + dU), which
shows that Weyl connections for closed 1-forms are locally metric (riemannian)
connections.

The curvature operator of a Weyl connection

R(X, Y)= 6){%}/ — §Y§X - 6[X,Y]
has the symmetric part, called the distance curvature, ﬁS(X, Y) = dp(X,Y)I,
where I is the identity operator, [F]. The antisymmetric part of the curvature
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operator Ea =R- ﬁs, called the direction curvature, can be used to define the
sectional curvature K (II) of the Weyl connection in the direction of a plane II

~

K@) = (R.(X,Y)Y, X),

for any orthonormal basis {X,Y} of II. These sectional curvatures depend on the
choice of the riemannian metric g in the conformal class and not on the Weyl
connection alone. However the sign of sectional curvatures is well defined. In
particular if dpy = 0, so that V is the locally riemannian connection of the metric
e~2Ug, for the local function U such that ¢ + dU = 0, we have that the sectional
curvatures Ky (TI) of this new metric and the Weyl sectional curvatures K (II) are
related by

(1.2) Ky(IT) = 2V K (11)
The Weyl sectional curvatures have a surprisingly transparent expression, [W1].
(1.3) K(Il) = K(II) — E} — divpE,

where K (II) is the riemannian sectional curvature in the direction of II, the vector
field E, is the component of E orthogonal to Il and divnE = (Vx E, X)+(VyE,Y)
for an orthonormal basis {X,Y} of II, is the “partial” divergence of the vector field
E.

In the 2-dimensional case there is only one sectional curvature at a point and the
formula (1.3) simplifies to K (II) = K(II) — divE. By the theorem of Gauduchon,
[G], on a compact manifold there is a unique metric in the conformal class (the
Gauduchon gauge) such that divE = 0. We conclude that for a compact surface
the sectional curvature of the Weyl connection with respect to the Gauduchon
gauge is equal to the Gaussian curvature. In particular on the 2-dimensional torus
T2, if the sectional curvature of a Weyl connection is nonpositive than it vanishes
everywhere, and all such Weyl connections can be obtained from divergence free
vector fields E. In the rest of the paper we will consider only manifolds of dimension
n > 3.

For the higher dimensional torus T",n > 3, with the standard flat metric, the
Weyl connection defined by any constant vector field E has by (1.3) negative sec-
tional curvature at any plane II which does not contain F, and zero sectional curva-
ture at any plane II containing £. We do not know of any other Weyl connections
on the standard torus with nonpositive sectional curvatures.

We will call a Weyl connection on a flat torus (or R™) integrable if on the set
where the 1-form ¢ does not vanish, the distribution of zero subspaces {¢ = 0} is
integrable. In particular every locally metric Weyl connection is integrable. The
notion of integrability depends on the choice of the metric in the conformal class.
We will consider it only with respect to the flat metric.

Theorem 1.1. On the torus T™,n > 3, with the flat metric, if an integrable Weyl
connection has nonpositive sectional curvatures everywhere then the defining 1-form
¢ is constant (equivalently the dual vector field E is constant).

We conjecture that Theorem 1.1 can be strengthened by allowing all Weyl con-
nections, integrable or not. In Proposition 2.1 we will prove that there are no Weyl
connections on T" with negative sectional curvatures everywhere.
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For a fixed positive number a let D be the group of dilations of R® by a*, k €
Z. Let M"* = S!' x S» ! = (R* \ {0})/D with the standard conformal structure
inherited from R™. We define a locally riemannian Weyl connection on M™ by the
metric on the covering space R™ \ {0} defined in the spherical coordinates (r,0) as
d?s = r22(d?r + r2d?0). Although for a # —1 the metric does not project on the
quotient manifold M", its Levi-Civita connection does. The connections for o and
—a — 2 are taken into each other by the inversion. We will calculate in Section 3
that these Weyl connections have nonpositive sectional curvatures for |a + 1| > 1.

Theorem 1.2. The locally metric Weyl connections described above are the only
Weyl connections on M™,n > 3, with nonpositive sectional curvatures.

It will be shown in Section 3 that in the case —2 < a < 0 there are pairs of
points in R™ \ {0} which are connected by two Weyl geodesics, and in the extreme
case of two points lying on one line passing through 0, on the opposite sides of 0,
there are continuum of connecting geodesics, two in every plane containing the pair
of points. In the case of nonpositive sectional curvatures (|a + 1| > 1) every two
points in R™ \ {0} are connected by exactly one Weyl geodesic or do not have any
connection whatsoever.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR
NONPOSITIVITY OF SECTIONAL CURVATURES ON T AND M"

We consider the euclidean space R™ with the conformal class defined by the
metric and two classes of quotient manifolds, the n-dimensional tori T* = R" /Z"
and M" = S! x S"7! = (R \ {0})/D. In both cases the quotient inherits the
conformal class from R™ and we can consider Weyl connections with respect to it.
A Weyl connection can be lifted to the covering space and expressed in terms of
the standard metric as in (1.1) by choosing a vector field E. To define a Weyl
connection on the quotient space the vector field E on R* (R™ \ {0}) must be Z"
periodic in the toral case and it has to satisfy the following equivariance property
in the case of M"

(2.1) Eau) = 2E(u),

for the coefficient of dilation a > 0, and any u € R™ \ {0}. For example, the Weyl
connections on M™ introduced in Section 1 are defined by E(u) = u = %e, where
r is the radial coordinate and e, is the unit radial vector field.

Proposition 2.1. If the Weyl connection on T" or M", defined by a vector field
E on R*(R™ \ {0}) has nonpositive sectional curvatures everywhere then at points
where E does not vanish the sectional curvatures in the direction of any plane 11
containing E are equal to zero, i.e., we have

(2.2) K(Il) = —(VxE, X) — (VyE,Y) =0,

for any orthonormal frame X,Y in the plane II.

Proof. For a plane II containing E' we have by (1.3)

(2.3) K()=—(VxE,X)— (VyE,Y) <0,
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for X = |E|"'E and any unit vector Y orthogonal to E. Averaging over all such
vectors Y we get from (2.3)

1

n—1
1

= ——— (divE + (n—2)(VxE, X)) <0.

—(VxE,X)—

1
divE + ——(Vx B, X)
(2.4) ne

It follows that for the C! vector field V = |E|"~2E we have
divV = |E|"2divE + (n — 2)(Vx E, X)|E|" 2 > 0.

If F C R” is a fundamental domain for our manifold then by the Stokes’ theorem we
get that [ divV = 0. Indeed in the case of T" it is obvious, and in the case of M"
we apply the Stokes’ theorem to the fundamental domain between two concentric
spheres and use the fact that by (2.1), V(au) = a » YV (a), so that the flux
across the boundary vanishes. It follows that divV = 0 and the expression in (2.4)
vanishes. Since it is the average of the nonnegative function (2.3) then the function
(2.3) must vanish as well. O

Assuming now that a vector field E does not vanish and satisfies the condi-
tion from Proposition 2.1 we will obtain necessary and sufficient conditions for the
nonpositivity of sectional curvatures at a point.

Proposition 2.2. At a point where the vector field E does not vanish and the Weyl
connection defined by it has zero sectional curvature at any plane containing E, all
the sectional curvatures are monpositive if and only if

(2.5) (VEE,Y)=—(VyE,E) and 2(VgE,E)<|E|*

for any vector Y orthogonal to E.

Proof. Let us consider three mutually orthogonal unit vectors X = %, Y1,Y:. We

will calculate the sectional curvature in the direction of the plane II spanned by Y;
and aX + bYs,a% + b2 = 1. We have by (1.3) and in view of (2.2)

K@) =— E?+ a*E?> — (Vy,E, Y1) — a®(VxE, X) — b*(Vy,E,Y3)
—ab((VxE,Ys) + (Vy, E, X)) =
=-b*(E* - 2(VxE, X)) —ab((VxE,Y2) + (Vy, E, X)) <0

3. THE cLASS OF WEYL CONNECTIONS ON
M"™ DEFINED BY RADIAL VECTOR FIELDS

Let us consider an arbitrary radial vector field E(u) = O‘S;) u where « is a smooth

function satisfying a(au) = a(u), so that (2.1) holds. We want to find all such vector
fields which define Weyl connections on M™ with nonpositive sectional curvatures.

The Weyl connection defined by E satisfies the condition from Proposition 2.1,
(i.e., in the open set where E does not vanish it has zero sectional curvature at any
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plane containing F) if and only if « is homogeneous of degree 0 (i.e., a(ku) = a(u)
for any k > 0). Indeed, we have for any vector field Z

o da(Z) 2a(Z, u)
VzE = EZ + 2 u— " U,
da(X
(VxE,X) = o(X) _ %, for X = l,
ul Jul

(VyE,Y) = %, for any unit vector Y orthogonal to FE.

We conclude that (2.2) is equivalent to da(E) = 0, i.e., where o does not vanish it
is constant on rays. Further, if o vanishes at a point then it must also vanish on
the whole ray passing through it.

We will now apply Proposition 2.2 to find all radial vector fields F that give rise
to Weyl connections with nonpositive sectional curvatures. We have for X,Y as
above
da(Y)

|ul

(VxE,Y)=0, (VyE,X)= ,
which leads us to the conclusion that da(Y) = 0 for any Y orthogonal to E. Hence
a = const. Finally

o2 2

(3.1) E? - 2(VxE,X) = WL
and we conclude that all sectional curvatures of the Weyl connection defined by E
are nonpositive if and only if « is constant, and o < —2 or a > 0.

These Weyl connections for different constant o seem to be quite similar. The
geometric difference between the cases of nonpositive and nonnegative sectional
curvatures transpires in the behavior of Weyl geodesics.

The equations of Weyl geodesics in R™ \ {0} parametrized by the arc length
coincide with the equations of the Gaussian thermostat, [W1],

(3.2) ‘Z—’t‘ =, z—;’ =E - (E,v)v, v*=1.

It is easy to see that every trajectory of (3.2) lies in a plane passing through 0
and hence the integration of (3.2) reduces to the case n = 2, which coincides with
the toral case. It was observed in [W1] (Proposition 6.5) that for the vector field
E(u) = %u, a # —1, the conformal mapping z — 2, | = a + 1, takes the
trajectories of (3.2) into straight lines. Hence in polar coordinates (r,6) in R? \ {0}
the Weyl geodesics are given by the equation r! cos (6 —6) = const # 0, or are rays
0 = const. In the case of a = —1 it is the conformal mapping z — In z which takes
the trajectories into straight lines and hence the Weyl geodesics are logarithmic
spirals or circles centered at the origin.

The inversion of the plane changes [ into —I. Hence it is sufficient to study the
case of [ > 0. By direct analysis we obtain that when 0 < [ < 1, the non radial
Weyl geodesics are convex curves (as seen from the origin) and they intersect some
of the lines passing through the origin at two points (lying on the opposite sides of
the origin). As a consequence some points in the plane are connected by two Weyl
geodesics, enclosing the origin. Also the exponential mapping is onto R? \ {0}.
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In dimension n > 3 we obtain by rotation continuous families of geodesics con-
necting two points on one line through the origin, with the origin between them.
Hence we have “conjugate” points. It was shown in [W1] that similarly to the
riemannian case nonpositivity of Weyl sectional curvatures implies the absence of
“conjugate” points.

In the case of nonpositive sectional curvatures, i.e., when [ > 1, the geodesics are
concave as seen from the origin and there is at most one geodesic connecting two
points in R? \ {0}, and there may be none, i.e., the exponential map is one-to-one
but it is not onto R? \ {0}.

Surprisingly the global dynamical behavior of the W-flow on the unit tangent
bundle of M" does not differ in the two cases. There are normally hyperbolic
attractor and repellor and every orbit is asymptotic to them or is contained in one

of them ([W1]).

4. PROOFS OF THEOREMS 1.1 AND 1.2

Let us consider a Weyl connection on R" (R" \ {0}) which factors onto the
quotient manifold T" (M") and is integrable. It means that where the vector field
FE does not vanish the distribution of the subspaces orthogonal to F is integrable. It
is further equivalent to the condition that the bilinear form (Vy, E, Y3) is symmetric
when restricted to the subspace orthogonal to E.

Theorem 4.1. If a Weyl connection on R* (R™ \ {0}) factors onto T" (M),
n > 3, is integrable and has nonpositive sectional curvatures, then E is constant in
the toral case and in the case of M™ E = %e, , with |a4 1| > 1.

Proof. Let us consider the vector field F = |E|~2E. The bilinear form (Vy, F, Y) is
still symmetric on the subspace orthogonal to E, and in view of (2.5) it is actually
symmetric on the whole space. Indeed it is sufficient to check that (VgF,Y) =
(VyF, E) for any vector Y orthogonal to E and we have

—=(VEE,Y), (VyF,E)=—-—01

It follows that the vector field F is locally a gradient of a function f.

We proceed with a local analysis at a point ug where FF = Vf # 0. In a
neighborhood of uy the level sets of the function f are smooth codimension 1
submanifolds. Observing that X = |E|~!FE is the unit normal vector field of the
level sets of f and using Proposition 2.1 we get that the second fundamental form
of a level set

1
(1) (VX.¥) =B (VyE,Y) = ~|E| (VxE,X) = Verg,

where Y is any unit vector tangent to the level set. In particular the level sets are
umbilic and hence they are pieces of (n — 1)-dimensional spheres or hyperplanes.
Let us assume further that at our point ug the level set is a sphere of radius r. In a
neighborhood of such a point the radius of the spherical level set r = r(f) and its
center s = s(f) are locally smooth functions. Indeed (4.1) shows that r is a local
smooth function in R” and we obtain r(f) by composing r with a smooth integral
curve of E parametrized by f. The smoothness of the center s(f) follows. We can
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now parametrize a neighborhood of ug by u = r(f)w + s(f), where w belongs to
the unit sphere |w|?> = 1. Note that we can treat w as a locally defined smooth
vector field (the vector field of unit normals to the level sets of the function f). Let
us consider an integral curve of E, w = w(f). We get

du

E=u

=r'w+rw' +8 ="+ (s, w)w+rw + 5 — (s, w)w.

Since F is parallel to w we conclude that
E=("+(,w))w and rw'+s —(s,w)w=0.

It follows that rVgw = rw’ = —s' + (s’,w)w. Substituting these equalities into
(4.1) we obtain
1 (8" w) + (s, ')

P W)

which yields
e’ 4+ (1) — ()2 = —(rs" + 25" w) — 2(s', w)*.

Since the left hand side does not depend on w (i.e., it is constant on level sets), the
same must be true about the right hand side. Setting A = rs” + 27's’ and B = &'
we get that for any vector field Y orthogonal to E

0= Vy ((4,w) + 2(B,w)?) = % ((A,Y) + 4(B,w)(B,Y)).

We conclude that A + 4(B,w)B is parallel to w. This implies that A = B = 0.
Hence s’ = 0 and rr” + (')? = 0. The integration of the last differential equation
yields f = cr? + d for some constants ¢,d, and F = Vf = 2cre, or equivalently
E = %e,.

It ;emains to consider the case when the level sets are locally hyperplanes, where
E # 0. It follows from (4.1) that (VyE,Y) = 0 = (VgE, E) for any vector Y
orthogonal to E. Further since by the integrability of the connection the quadratic
form (Vy, E,Y>) is symmetric on the subspace orthogonal to E, we conclude that
it must vanish there. By (2.5) we also have (Vg E,Y) = —(Vy E, E) for any vector
Y orthogonal to E. It follows that VE is skewsymmetric and hence E must be
a Killing vector field, i.e, E(u) = Hu + h, where H is a skewsymmetric matrix
and h is a constant vector. Clearly none of the Killing vector fields satisfies the
equivariance condition (2.1) and only the constant field factors onto the torus. [

It is obvious that Theorem 4.1 implies Theorem 1.1. In the case of M" we
can drop the assumption of integrability in Theorem 4.1, which is the content of
Theorem 1.2,

Proof of Theorem 1.2. We introduce on M" = S! xS"~! = (R™\{0})/D the product
riemannian metric d%s = % +d?0, where (r, 0) are spherical coordinates in R™\{0}.
This metric has nonnegative sectional curvatures and its Ricci curvature is positive
except for the direction of S* where it vanishes (this can be checked using (1.2) and
(1.3)). Let E be the tangent vector field on M defining the Weyl connection with
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respect to this metric. We repeat now the argument from the proof of Proposition

2.1.
For a plane II containing E # 0 we have by (1.3)

(4.4) K(M) = K(II) - (VxE, X) — (VyE,Y) <0,

for X = |E|"'E and any unit vector Y orthogonal to E. Averaging over all such
vectors Y we get from (4.4)

— (Ric(X, X) — divE — (n— 2)(Vx E, X)) <0.

It follows that for the C! vector field V = |E|"~2E we have
|E|"2Ric(X, X) — divV < 0.

We treat the left hand side as a function defined on M™ (vanishing where E = 0)
and integrating it over M"™ (with respect to the riemannian volume) we obtain
J|E|"2Ric(X,X) < 0. Since the integrand is nonnegative it must vanish identi-
cally. As observed above Ric(Z, Z) vanishes if and only if Z is parallel to S!. We
conclude that if the vector field E does not vanish then it must be parallel to S'.
To obtain the euclidean metric in R™ \ {0} we need to multiply our product
metric by 72. The vector field defining the Weyl connection with respect to the
euclidean metric will be different from F, but it will still be a radial vector field.
Now it is sufficient to recall Section 3 where we found all radial vector fields on
R™ \ {0}, which define Weyl connections on M" with nonpositive sectional curva-
tures. O
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