Math 129 (Fall '05) - Exam 1 Solutions - Kennedy

1. Let $u=\sqrt{x}$. So $d u=\frac{1}{2} x^{-1 / 2}$. This substitution gives

$$
\begin{equation*}
\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x=2 \int \sin u d u=-2 \cos (u)+C=-2 \cos \sqrt{x}+C \tag{1}
\end{equation*}
$$

2. Let $u=\ln x$ and $v^{\prime}=x^{2}$. Then $u^{\prime}=1 / x$ and $v=x^{3} / 3$. So integration by parts give

$$
\begin{equation*}
\int_{1}^{2} x^{2} \ln x d x=\frac{1}{3} x^{3} \ln x-\frac{1}{3} \int \frac{1}{x} x^{3} d x=\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C \tag{2}
\end{equation*}
$$

3. First complete the square $x^{2}+2 x+4=(x+1)^{2}+3$. So we let $u=x+1$. So $d u=d x$ and so

$$
\begin{equation*}
\int \frac{1}{x^{2}+2 x+4} d x=\int \frac{1}{(x+1)^{2}+3} d x=\int \frac{1}{u^{2}+3} d u \tag{3}
\end{equation*}
$$

From the tables $(a=\sqrt{3})$, this is

$$
\begin{equation*}
\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{u}{\sqrt{3}}\right)+C=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)+C \tag{4}
\end{equation*}
$$

4. Note that $n=3$.

$$
\begin{array}{rc}
\text { LEFT } & =2(2.1+3.1+4.1)=18.6 \\
\text { RIGHT } & =2(3.1+4.1+2.2)=18.8 \\
\text { TRAP }= & (L E F T+R I G H T) / 2=18.7 \\
\text { MID } & =2(2.5+3.9+3.6)=20.0 \\
\text { SIMPSON } & =\frac{2 M I D+T R A P}{3}=19.57 \tag{9}
\end{array}
$$

5. Factor the denominator : $x^{3}+x=x\left(x^{2}+1\right)$. So the partial fraction decomposition is

$$
\begin{equation*}
\frac{x-1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \tag{11}
\end{equation*}
$$

A common denominator then gives

$$
\begin{equation*}
x-1=A\left(x^{2}+1\right)+(B x+C) x \tag{12}
\end{equation*}
$$

So

$$
\begin{equation*}
x-1=(A+B) x^{2}+C x+A \tag{13}
\end{equation*}
$$

which gives the equation $A+B=0, C=1$ and $A=-1$. So $B=1$. Thus

$$
\begin{array}{rc}
\int \frac{x-1}{x^{3}+x} d x & =\int \frac{-1}{x} d x+\int \frac{x+1}{x^{2}+1} d x \\
& =-\ln x+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
= & -\ln x+\frac{1}{2} \ln \left(x^{2}+1\right)+\tan ^{1} x+C \tag{16}
\end{array}
$$

7. (a)

$$
\begin{align*}
L E F T=1.4173, \quad \text { RIGHT } & =1.6149 \tag{17}\\
M I D & =1.5397, \quad \text { TRAP } \tag{18}
\end{align*}=1.5161
$$

(b) From the graph we see that the function is increasing and concave down on the interval $[0,2]$. The fact that it is increasing implies $L E F T$ is an underestimate and RIGHT is an overestimate. The fact that it is concave down implies that $T R A P$ is an underestimate and MID is an overestimate.
8. First work out the indefinite integral. You can use the table or do it by parts. Let $u=x, v^{\prime}=e^{-x}$. So $d u=d x, v=-e^{-x}$. Thus

$$
\begin{equation*}
\int x e^{-x} d x=-x e^{-x}+\int e^{-x}=-x e^{-x}-e^{-x}+C \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{b} x e^{-x} d x=-b e^{-b}-e^{-b}+0 e^{-0}+e^{-0}=-b e^{-b}-e^{-b}+1 \tag{21}
\end{equation*}
$$

As $b \rightarrow \infty, e^{-b}$ goes to 0 . Since "exponentials beat polynomial", $b e^{-b}$ also goes to 0 . This shows the improper integral converges and is equal to 1 .
9.(a) You just have to run the calculator program for

$$
\begin{equation*}
I(1)=\int_{0}^{1} e^{-\sqrt{x}} d x \tag{22}
\end{equation*}
$$

With $n=20$, SIMPSON is 0.528803 .
(b) The substitution $u=t^{2} x$ gives $d u=t^{2} d x$. (t is not a function of x.) So the indefinite integral becomes

$$
\begin{equation*}
\int e^{-t \sqrt{x}} d x=\frac{1}{t^{2}} \int e^{-\sqrt{u}} d u \tag{23}
\end{equation*}
$$

We must also figure out how the limits changes. $x=0$ implies $u=0$ and $x=t^{-2}$ implies $u=1$. So we find that $I(t)=I(1) t^{-2}$ which is approximately $0.5288 t^{-2}$
(c) If you did (b) then you can graph $I(t)$ right away. If you didn't do (b) you can still use your calculate to compute $I(t)$ for more values of t and sketch a graph this way.

