Review: mins, maxs and inflection points

$f(x)$ has a local min at $x=a$ if $f(a) \leq f(x)$ for all x in some neighborhood of a.
$f(x)$ over the interval I has a global min at $x=a$ if $f(a) \leq f(x)$ for all x in I.
$f(x)$ has a critical point at a if $f^{\prime}(a)=0$ (or is undefined).
If $f(x)$ has a local min or max at a, then a is a critical point.
Second derivative test: If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then f has a local \min at $x=a$.

First derivative test: If $f^{\prime}(a)=0, f^{\prime}(x)<0$ for x just left of a and $f^{\prime}(x)>0$ for x just right of a, then f has a local min at $x=a$.
$f(x)$ has an inflection point at a if f changes concavity at a. At an inflection point $f^{\prime \prime}(a)=0$.

Global min/max: If there is one, it will occur at a local min/max or an endpoint.

Functions with parameters: Everything (number of mins, maxs, inflection points, their locations ...) can depend on the parameter.

Review: Fund. thm. of calc.; dif. eqs.

Difference between $\int f(x) d x$ and $\int_{a}^{b} f(x) d x$.
Fundamental thm of calculus: If $f(x)$ is continuous on $[a, b]$ and $F^{\prime}(x)=f(x)$ (F is an antiderivative of f), then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Second fundamental thm of calculus: If $f(x)$ is continuous on $[a, b]$, then

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{x} f(u) d u=f(x) \\
\frac{d}{d x} \int_{g(x)}^{h(x)} f(u) d u=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)
\end{gathered}
$$

7.1 Integration by substitution (8/27)

Chain rule :

$$
\frac{d}{d x} f(u(x))=f^{\prime}(u(x)) u^{\prime}(x)
$$

Guess and check: Guess the antiderivative and check with chain rule. Fudge as needed.
Substitution: (assumes original integral is with respect to x)

1. Cleverly choose function $u(x)$.
2. Compute $u^{\prime}=\frac{d u}{d x}$. $d u=u^{\prime} d x$.
3. Express integrand in terms of u.
4. Do the u integral.
5. Express answer in terms of x.

7.2 Integration by parts (8/29)

Integration by parts:

$$
\begin{gathered}
\int u v^{\prime} d x=u v-\int u^{\prime} v d x \\
\int u d v=u v-\int v d u \\
\int_{a}^{b} u v^{\prime} d x=[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x
\end{gathered}
$$

Choosing u and v^{\prime} :

1. Must be able to compute v from v^{\prime}.
2. Would like u^{\prime} to be simpler than u.

Appendix B: Complex numbers (8/31)

Basic algebra: $i=\sqrt{-1}, \quad i^{2}=-1$ General complex number is $a+b i$.

Addition/subtraction: obvious

Multiplication: remember $i^{2}=-1$.
Division:
Complex conjugate of $z=a+b i$ is $\bar{z}=a-b i$.

$$
\frac{1}{a+b i}=\frac{1}{a+b i} \frac{a-b i}{a-b i}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
$$

Euler's formula:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Polar coordinates

$$
r e^{i \theta}=r \cos (\theta)+i r \sin (\theta)
$$

Trig functions:

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Dif Eq 1.1: Simplest dif. eq. (9/3)

Definitions: First order differential equation:

$$
\frac{d y}{d x}=g(x, y)
$$

y is (unknown) function of x.
Initial condition: $y\left(x_{0}\right)=y_{0}$
Special case for chap one:

$$
\frac{d y}{d x}=g(x)
$$

Solving dif eq \Longleftrightarrow integrating $g(x)$.
General solution: $y(x)=\int g(x) d x+C$ Initial condition picks out a single solution.

Dif Eq 1.2: Graphical solutions (9/5)

Strategy: Dif eq gives you derivates of unknown $y(x)$. Use calculus to conclude things.

$$
\frac{d y}{d x}=g(x)
$$

Sign of $g(x)$ tells you increasing/decreasing.

$$
\frac{d^{2} y}{d x^{2}}=g^{\prime}(x)
$$

Sign of $g^{\prime}(x)$ tells you concavity
Symmetry:
If $g(x)$ is odd and $y(x)$ is a solution, then $y(-x)$ is a solution.
If $g(x)$ is even and $y(x)$ is a solution, then $-y(-x)$ is a solution.

Dif Eq 1.3: Slope Fields (9/10)

Tangent lines:

$$
y(x+\Delta x) \approx y(x)+\frac{d y}{d x}(x) \Delta x
$$

Slope field: If $y(x)$ solves dif. eq.

$$
\frac{d y}{d x}=g(x, y)
$$

then slope at $(x, y(x))$ is $g(x, y(x))$.
Drawing slope field: Draw a grid of points in x, y plane.
At a point (x, y) draw a small line segment with slope $g(x, y)$.
Drawing solution:
Start at the initial condition. Draw a curve so that its tangent lines follow the slope field.

Dif Eq 2.1: Autonomous equations

Def: A first order dif. eq. is autonomous if it is of the form $\frac{d y}{d x}=g(y)$.
Separation of variables gives implicit equation for $y(x)$.

$$
\frac{d y}{g(y)}=d x \quad \Rightarrow \quad \int \frac{d y}{g(y)}=\int d x=x+C
$$

Slope field and calculus give you qualitative picture.
Slope field is constant in horizontal direction.
If $y(x)$ is a solution, then $y(x+C)$ is a solution.
An equilibrium solution is a solution of the form $y(x)=$ constant . Caution: Separation of variables can "lose" these solutions.
An equilibrium solution is stable if solutions that start near the equilibrium solution converge to the equilibrium solution as $x \rightarrow \infty$.
An equilibrium solution is unstable if solutions that start near the equilibrium solution move away from it as $x \rightarrow \infty$.

Dif Eq 2.2: Exponential growth/decay

The simplest model for growth or decay is to assume the quantity grows at a rate proportional to the quantity:

$$
\frac{d y}{d t}=k y
$$

The general solution is

$$
y(t)=y_{0} e^{k t}
$$

y_{0} is the amount at time $t=0$.
If $k>0$ we have exponential growth.
The doubling time t_{d} is given by solving $y\left(t_{d}\right)=2 y_{0}$.
If $k<0$ we have exponential decay.
The half-life t_{h} is given by solving $y\left(t_{h}\right)=\frac{1}{2} y_{0}$.

Calc 7.4: Partial fractions (9/14)

Algebraic method to integrate rational functions. $P(x)$ and $Q(x)$ are polynomials. Degree of P is lower than that of Q. (Long division if needed.)

$$
\frac{P(x)}{Q(x)}=\text { sum of terms }
$$

Factor $Q(x)$ into a product of linear terms and quadratic terms that have no real roots. For each factor:
Distinct linear factor $(x-c)$ Include term
$\frac{A}{x-c}$
Repeated linear factor $(x-c)^{n}$ Include terms
$\frac{A_{1}}{x-c}+\frac{A_{2}}{(x-c)^{2}}+\cdots+\frac{A_{n}}{(x-c)^{n}}$
Distinct quadratic factor $q(x)$ Include term
$\frac{A x+B}{q(x)}$
Repeated quadratic factor $q^{n}(x)$ Include terms
$\frac{A_{1} x+B_{1}}{q(x)}+\frac{A_{2} x+B_{2}}{q^{2}(x)}+\cdots+\frac{A_{n} x+B_{n}}{q^{n}(x)}$

Dif Eq. 2.3: Logistic Equation

Model for population growth. t is time, $y(t)$ is population

$$
\frac{d y}{d t}=a y(b-y)
$$

For small $y, d y / d t$ proportional to y.
Environment can sustain maximum population of $y=b$.
$y=0$ is unstable equilibrium.
$y=b$ is stable equilibrium.

Dif Eq. 2.4: Existence/Uniqueness (9/26)

Big questions:
Local existence
Global existence
Uniqueness
Existence-Uniqueness Theorem For differential equation

$$
\frac{d y}{d x}=g(x, y)
$$

suppose $g(x, y)$ and $\frac{\partial g}{\partial y}$ are defined and continuous in a rectangle which has $\left(x_{0}, y_{0}\right)$ in its interior. Then there exists a solution through $\left(x_{0}, y_{0}\right)$ which is defined for x in an interval with x_{0} in its interior. There is no other solution through $\left(x_{0}, y_{0}\right)$
Caution : There are $g(x, y)$ for which solutions can intersect.

Dif Eq. 2.5: Phase lines (9/28)

Autonomous differential equation

$$
\frac{d y}{d x}=g(y)
$$

Phase line: Line is for y.
Find equilibria (zeroes of $g(y)$). Mark them on line.
Find sign of $g(y)$. Indicate on line with $->-$ for $g>0,-<-$ for $g<0$
Determine stable, unstable equilibria.
Derivative test for stable/unstable:
Let c be equilibrium solution, so $g(c)=0$.
If $g^{\prime}(c)<0$ then c is stable.
If $g^{\prime}(c)>0$ then c is unstable.
If $g^{\prime}(c)=0$ then who knows.
Monotonicity:
Non-equilibrium solutions are always increasing or always decreasing.

Dif Eq. 2.6: Bifurcation diagrams (10/1)

If the differential equation contains a parameter, the behavior can change qualitatively as the parameters changes.
In particular, number of equilibrium solutions and their stability can change.
Bifurcation diagram is a plot of all the equilibria as a function of the parameter. Also indicates their stability.

Dif Eq. 3.1: Graphical analysis : $g(x, y)$
 (10/5)

Now consider the most general first order equation

$$
\frac{d y}{d x}=g(x, y)
$$

In general, no analytic solution.
Graphical tools:
Slope fields
Monotonicity: increasing vs. decreasing : sign of $\mathrm{g}(\mathrm{x}, \mathrm{y})$
Concavity: sign of $\frac{d^{2} y}{d x^{2}}$, remember $y=y(x)$.
Symmetries
Isoclines: especially $\mathrm{m}=0$ isocline:
Isoclines are cuves $g(x, y)=m$. For $m=0$ they are possible locations of local max or min of solution curves.

Dif Eq. 3.2: Symmetry, scaling (10/8)

Symmetry for $\frac{d y}{d x}=g(x, y)$.
If slope field is symmetric about y-axis, $g(-x, y)=-g(x, y)$, then the solutions are even functions.
If slope field is symmetric about x-axis, $g(x,-y)=-g(x, y)$, and $y(x)$ is a solution, then $\bar{y}(x)=-y(x)$ is another solution.
If slope field is symmetric about origin, $g(-x,-y)=g(x, y)$, and $y(x)$ is a solution then $\bar{y}(x)=-y(-x)$ is another solution. In particular the solution through the origin is an odd function.

Scaling: If $y(x)$ solves some differential equation, then for constants a and $b, \bar{y}(x)=a y(b x)$ solves a similar equation. You may be able to eliminate some parameters this way.

Calc 7.5,7.6: Numerical Integration

To compute $\int_{a}^{b} f(x) d x$, let n be positive integer.
$x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}$ are equally spaced with $a=x_{0}, b=x_{n}$.
So spacing is $\Delta x=(b-a) / n$.
Riemann Sums:
$\operatorname{LEFT}(n)=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x, \quad \operatorname{RIGHT}(n)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
Midpoint rule: $\operatorname{MID}(n)=\sum_{i=1}^{n} f\left(\left(x_{i-1}+x_{i}\right) / 2\right) \Delta x$,
Trapezoid rule: $\operatorname{TRAP}(n)=\sum_{i=1}^{n} \frac{1}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \Delta x$
Simpson's rule: SIMPSON $(n)=\frac{2}{3} M I D(n)+\frac{1}{3} T R A P(n)$
Error of method is $\mid \int_{a}^{b} f(x) d x$ - approximation \mid
Order of method: How fast error $\rightarrow 0$ as $N \rightarrow \infty$.
LEFT, RIGHT are first order. Error $\rightarrow 0$ as $1 / N$.
$M I D, T R A P$ are second order. Error $\rightarrow 0$ as $1 / N^{2}$.
SIMPSON is fourth order. Error $\rightarrow 0$ as $1 / N^{4}$.

Calc 7.5,7.6: Numerical \int Cont. (10/15)

Over/under estimate:
If f is increasing on $[a, b]$ then $L E F T \leq \int_{a}^{b} f(x) d x \leq$ RIGHT
If f is decreasing on $[a, b]$ then $R I G H T \leq \int_{a}^{b} f(x) d x \leq L E F T$
If f is concave up on $[a, b]$ then $M I D \leq \int_{a}^{b} f(x) d x \leq T R A P$
If f is concave down on $[a, b]$ then $T R A P \leq \int_{a}^{b} f(x) d x \leq M I D$
Extrapolation: If error $\approx c / N^{p}$, then by evaluating approximation at N and $2 N$, we can get a better approximation:
$\int_{a}^{b} f(x) d x=A P P R O X(N)+\frac{c}{N^{p}}$
$\int_{a}^{b} f(x) d x=A P P R O X(2 N)+\frac{c}{(2 N)^{p}}$
Solve two equations for unknowns $\int_{a}^{b} f(x) d x$ and c. Result is a better approximation for $\int_{a}^{b} f(x)$.

Dif Eq 4.1: Separation of Variables (10/22)

Differential equation has the form
$\frac{d y}{d x}=f(y) g(x)$
Equilibria: First find all the zeroes (if any) of f. These y values are equilibrium solutions.

Solving it :

$$
\int \frac{d y}{f(y)}=\int g(x) d x
$$

Do both integrals. Then solve for y as a function of x.
Caution: put in the $+C$ at the right place.

Dif Eq 3.3: Numerical solutions (10/24)

Want to numerically approximate solution of $\frac{d y}{d x}=g(x, y)$ through $\left(x_{0}, y_{0}\right)$.
$x_{n}=x_{0}+n h$. Step size is h.
y_{n} is approximation to $y\left(x_{n}\right)$.

Dif Eq 3.3: Numerical solutions (10/24)

Want to numerically approximate solution of $\frac{d y}{d x}=g(x, y)$ through $\left(x_{0}, y_{0}\right)$.
$x_{n}=x_{0}+n h$. Step size is h.
y_{n} is approximation to $y\left(x_{n}\right)$.
Euler: $y_{n}=y_{n-1}+g\left(x_{n-1}, y_{n-1}\right) h$

Dif Eq 3.3: Numerical solutions (10/24)

Want to numerically approximate solution of $\frac{d y}{d x}=g(x, y)$ through $\left(x_{0}, y_{0}\right)$.
$x_{n}=x_{0}+n h$. Step size is h.
y_{n} is approximation to $y\left(x_{n}\right)$.
Euler: $y_{n}=y_{n-1}+g\left(x_{n-1}, y_{n-1}\right) h$
Modified Euler or Huen : $y\left(x_{1}\right)=y\left(x_{0}\right)+\frac{1}{2} h\left(m_{0}+k_{1}\right)$
$m_{0}=g\left(x_{0}, y_{0}\right)$
$k_{1}=g\left(x_{1}, y_{0}+m_{0} h\right)$

Dif Eq 3.3: Numerical solutions (10/24)

Want to numerically approximate solution of
$\frac{d y}{d x}=g(x, y)$ through $\left(x_{0}, y_{0}\right)$.
$x_{n}=x_{0}+n h$. Step size is h.
y_{n} is approximation to $y\left(x_{n}\right)$.
Euler: $y_{n}=y_{n-1}+g\left(x_{n-1}, y_{n-1}\right) h$
Modified Euler or Huen : $y\left(x_{1}\right)=y\left(x_{0}\right)+\frac{1}{2} h\left(m_{0}+k_{1}\right)$
$m_{0}=g\left(x_{0}, y_{0}\right)$
$k_{1}=g\left(x_{1}, y_{0}+m_{0} h\right)$
Order of methods :
Error is difference between exact solution and approximation. It typically goes as h^{p}.
Euler: $p=1$
Modified Euler (Huen) $p=2$
Fourth order Runge-Kutta $p=4$

Dif Eq 3.4: Comparison theorem (10/26)

Comparison theorem Consider the two differential equations
$\frac{d y}{d x}=f(x, y)$
$\frac{d y}{d x}=g(x, y)$
with the same initial condition $y\left(x_{0}\right)=y_{0}$. Suppose $f(x, y)<g(x, y)$ for all $x>x_{0}$ and all y. Then the solution to the first differential equation is less than the solution to the second differential equation for $x>x_{0}$ as long as these solutions exist.

Application Suppose we have a differential equation $\frac{d y}{d x}=f(x, y)$ that we can't solve. Look for a simpler equation $\frac{d y}{d x}=g(x, y)$ with $f(x, y)<g(x, y)$ (or $f(x, y)>g(x, y)$) that we can solve.

Dif Eq 4.2: Homogeneous coefficients (10/29)

$g(x, y)$ is homogeneous of degree zero if $g(c x, c y)=g(x, y)$ for all $c \neq 0$.
For such g there is a function of one variable, G, such that $g(x, y)=G(y / x)$.

Solving $\frac{d y}{d x}=G(y / x)$.
Try the substitution $y(x)=x u(x)$.
Should get separable differential equation for u.
Linear solutions:
$y(x)=m x$ is a solution if $G(m)=m$.

Dif Eq 4.3: Dif eqs from data (10/31)

Numerical differentiation: For small h,

$$
\begin{gathered}
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h} \quad \text { Better }
\end{gathered}
$$

Log-log plots: Suppose we have data points $\left(x_{i}, y_{i}\right)$ and we think $y=c x^{p}$ but don't know p. Take the $l n$:

$$
y=c x^{p} \quad \Rightarrow \quad \ln (y)=\ln (c)+p \ln (x)
$$

So if we plot $\ln (y)$ as a function of $\ln (x)$ we should see a straight line and the slope is p.

Dif Eq 4.4: Objects in motion (11/2)

Velocity, acceleration:
Let t be time, $x(t)$ position.
Then velocity is $v(t)=\frac{d x}{d t}$.
Acceleration is $a(t)=\frac{d v}{d t}$.
Newton's second law:
$F=m a, F$ is force

Dif Eq 5.1: Solving first order linear DE

Put equation in form $y^{\prime}+p(x) y=q(x)$
Compute the integrating factor $e^{\int p(x) d x}=e^{\int p}$.
Multiply dif. eq. by the integrating factor:

$$
e^{\int p} y^{\prime}+e^{\int p} p(x) y=e^{\int p} q(x)
$$

Recognize this as

$$
\left[e^{\int p} y\right]^{\prime}=e^{\int p} q(x)
$$

Integrate:

$$
e^{\int p} y=\int e^{\int p} q(x) d x
$$

Dif Eq 5.2: Models/ first order linear DE (11/16)

Steady states and transients:
Often the solution to a linear differential equation is a sum of two parts.
The part of the solution that goes to zero as $t \rightarrow \infty$ is called the transient part.

The remaining part of the solution that does not go to zero as $t \rightarrow \infty$ is called the steady state part.

Warning : Steady state is not the same as equilibrium. Equilibrium solutions are constant in time. Steady state solutions can be periodic.

Dif Eq 5.3: Bernoulli’s Equation (11/19)

Consider differential equation of the form:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

where n is any real number besides 1 .

Dif Eq 5.3: Bernoulli's Equation (11/19)

Consider differential equation of the form:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

where n is any real number besides 1 .
The substitution $u=y^{1-n}$ will lead to a linear dif. eq. for u.

Dif Eq 5.3: Bernoulli's Equation (11/19)

Consider differential equation of the form:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

where n is any real number besides 1 .
The substitution $u=y^{1-n}$ will lead to a linear dif. eq. for u.
Note: If you forget the power of y for the substitution, just take $u=y^{p}$ and your calculations will tell you what p should be.

Dif Eq 5.3: Bernoulli's Equation (11/19)

Consider differential equation of the form:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

where n is any real number besides 1 .
The substitution $u=y^{1-n}$ will lead to a linear dif. eq. for u.
Note: If you forget the power of y for the substitution, just take $u=y^{p}$ and your calculations will tell you what p should be.

Calc 8.1,8.2: Volumes,Geometry
 (11/26)

Riemann sums and slicing:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

Calc 8.1,8.2: Volumes,Geometry
 (11/26)

Riemann sums and slicing:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

1. Slice your problem up. (Introduce coordinates.)

Calc 8.1,8.2: Volumes,Geometry
 (11/26)

Riemann sums and slicing:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

1. Slice your problem up. (Introduce coordinates.)
2. Write the quantity you want as a sum of the form $\sum_{i} f\left(x_{i}\right) \Delta x$

Calc 8.1,8.2: Volumes,Geometry (11/26)

Riemann sums and slicing:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

1. Slice your problem up. (Introduce coordinates.)
2. Write the quantity you want as a sum of the form $\sum_{i} f\left(x_{i}\right) \Delta x$
3. Figure out the definite integral this converges to and compute it.

Calc 8.1,8.2: Volumes,Geometry
 (11/26)

Riemann sums and slicing:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

1. Slice your problem up. (Introduce coordinates.)
2. Write the quantity you want as a sum of the form $\sum_{i} f\left(x_{i}\right) \Delta x$
3. Figure out the definite integral this converges to and compute it.

Arc length: For graph of $f(x), a \leq x \leq b \quad$ length $=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$
For parametric curve $(x(t), y(t)), a \leq t \leq b$
length $=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Calc 8.4,8.5: Mass, work, pressure (11/28, 11/30)

Physics:
For constant density, mass = density \cdot volume
For constant force, work $=$ force \cdot distance
For constant pressure, force $=$ pressure \cdot area
If density, force or pressure is not constant, slice the problem up so that the quantity is constant within a slice. Then mass, force or pressure can be computed by an integral.

Units:
In Metric system mass is measured in grams, kilograms,.... Force is measured in Newtons, dynes. A Newton is kilogram-meter/sec ${ }^{2}$. Dyne is gram-centimeter $/ \mathrm{sec}^{2} .10^{5}$ dynes is a Newton. Work is measured in Joules, ergs. A Joule is a Newton - meter. Erg is a dyne-cm.

In English system force is measured in pounds.
1 Newton ≈ 0.225 pounds.
Mass is measured in slugs
On Earth, the weight of (gravitational force on) one kilogram is 9.8 N ≈ 2.2 pounds.

