Calc 7.7: Improper integrals (1/16)

Improper limits

b— o0

o0 b
/ f(x)dzr = lim / f(x)dz, if limit exists

/ flx)dr = / f(x) d:B—|—/ f(x)dx, if both integrals on right exist

Improper integrand: if f(x) is continuous on a < x < b, but blows up as
T — b,

b c
/ f(z)dr = lim / f(x)dz, if limit exists

c—b—

If f(x) blows up at interior point ¢, a < ¢ < b, then

b c b
/ f(z)dx :/ f(x) d37—|—/ f(x)dx, if both integrals on right exist
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Calc 7.8: Comparison of Improper [’s (1/18)

Comparison Test:
Let f(x) and g(x) be non-negative functions with f(x) < g(x) for z > c.

If [7° g(x) dz converges, then [ f(z) dx converges.
If [7° f(z) dz diverges, then [~ g(z) dz diverges.

There is a similar statement for improper integrals where the integrand
blows up.

Useful comparison integrals:

[° 2 dx converges if p > 1 and diverges if p < 1.

fol — dx converges if p < 1 and diverges if p > 1.

[;” e“* dz converges if a < 0 and diverges if a > 0.
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Calc 9.1: Sequences (1/23)

A sequence is an infinite list of numbers, sq, so, s3, - - -.
More precisely, it is a function from the natural numbers
N ={1,2,3,4,---} to the real numbers R.

Convergence: We say that a sequence s,, conveges to a real number
L, if for every positive real number ¢ we can find a positive integer N
such that |s,, — L| < e whenever n > N. We say the sequence s,
diverges if there is no such L.

We say a sequence s,, is bounded if there are numbers K and M such
that K <s, < Mforn=1,2,3,---.

We say a sequence is increasing if s,, < s,11 form=1,2,3,---.
It is decreasing if s,, > 5,41 forn=1,2,3,---.
It is monotone if it is increasing or decreasing.

Theorem: Every convergent sequence is bounded.

Theorem: Every bounded monotone sequence converges.
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Calc 9.2: Geometric Series (1/25)

A geometric series is a series of the form

If || < 1, then

If 2 £ 1, then

1+x+xﬁﬂﬁ+~-:§:ﬂl
n=0
>an -
— 1l —=x
- 1 — gntl
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Calc 9.3: Convergence of Series (1/28)

The partial sums of .~ ax are s,, = >, _, ax. The series
converges to L if the sequence of partial sums converges to L.

Integral test: Suppose f(x) is a decreasing, positive function for z > ¢
and a,, = f(n).

If [7° f(z) dz converges, then Y, a, converges.

If [ f(z)dz diverges, then " a,, diverges.

Application: ) ; n~P converges if p > 1 and diverges if p < 1.

Some properties:
1.1f> a,and) b, both converge, then ) (ca, + db,,) converges

2. Changing a finite number of terms does not change whether a
series converges.
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Calc 9.4: More tests for convergence (1/30)

Comparison test: Suppose 0 < a,, < b,,.
If > b, converges, then ) a, converges
If > a, diverges, then ) b, diverges

Absolute convergence : We say > _  a,, converges absolutely if > |a,|
converges. If ) a,, converges absolutely then it converges.

Application: ) . n~P converges if p > 1 and diverges if p < 1.

Ratio test:
For the series ) | a,, suppose the sequence |a,+1|/|an| cOnveges:

lim —\an+1| = L

If L <1 then the series ) a, converges.
If L > 1 then the series ) a,, diverges.
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Calc 9.4: continued (2/1)

Limit comparison test:
Suppose b, > 0, a,, > 0 and lim,,_., 7= exists and is nonzero.

Then ) a, converges if and only if > b, converges.
Alternating series test:

Suppose a,, > 0, a,,+1 < a, and the sequence a,, converges to zero.
Then ) (—1)"a, converges.
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Calc 9.5: Power series (2/4)

A power series about «a is a series of the form

ZE—CZ

M8

n=1

Radius of convergence Every power series has a radius of
convergence R € [0, o] with the properties that

if |x — a|] < R then the series converges absolutely and

if |z — a| > R then the series diverges.

Finding R: Use the ratio test. The condition L < 1 will give you a
condition on x which will tell you R.

Complex power series: > c¢,2". All of the above still holds with

|z + iy| defined to be /22 + y2.
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Calc 10.1: Taylor polynomials (2/6)

The Taylor polynomial of degree n of f(x) about a is

e ﬂ@+¢%@@—aw+5§9@—aV+f%$%x—@3
() (4
. fnfhx_wn
(k)
Z x—ak

where f*) denotes the kth derivation of f.

It is the polynomial that best approximates f near x = a in the sense
that the value of this polynomial and its first n derivatives at = = a
agree with those of f(x).
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Calc 10.2: Taylor series (2/8)

The Taylor series of f(x) about a is

0 £(n)(y
Zf ()(x_a)n

n!
n=0
. ¢ @ = "
e’ = 1+x+§+§+---=;m
. 3 70 o N r2n+l
S = ”3_3!+5!_"':;(_1) (2n+1)!
72 74 o nZE2n
OB = 1_2!+4!_”':;(_1) (2n)!
72 73 74 e ik
In(1 — _ .= _1yntlz
n(l+ x) T =S + 3 1 + ;( ) o
1 1) (p—2
(14+x)P = 1+px+p(p )x2+p(p )(p )x3+---

2! 3!
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Calc 10.3: Shortcuts, applications of T.S. (2/11)

Products: Taylor series of fg is product of T.S. of f and T.S. of g.
For Taylor polynomial of degree n, use Taylor polynomials of degree n
for f and g, BUT throw out terms of degree > n.

Substitution: For Taylor series of f(z?), substitute z? into T.S. of f(x).
Taylor polynomial of f of degree n will give Taylor polynomial of degree
np for f(«P) when you do this.

Composition: If g(0) = 0 we can get T.S. about 0 of f(g(x)) by
substituting T.S. of g(x) for the argument in T.S. of f(x).
For polynomials, again throw out terms you get with degree > n.

Integration/differentiation: You can integrate or differentiate Taylor
series you already know to generate new ones.
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Calc 10.4: Error and convergence (2/15)

Error for nth order Taylor polynomial:

Mn—l—l
(n+1)!

[f(z) = Pa(z)] < 2 —a|""
M,, 1 is max of |f(»+1)| over interval from a to z.

Series convergence: For a given z, if you can show the error in the
Taylor polynomial goes to 0 as n — oo, then at x, the Taylor series
converges to the function.
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Dif Eq 3.5: Power series solutions (2/18)

Power series solution of dif eq about 0: We assume the solution has a
power series expansion about 0:

y(z) = > caa”
n=0

y'(z) = Z conx Tt = Z Cnr1(n+ 1)x™
n=1 n=0

Find the Taylor expansions of any functions of x in the equation.
Replace everybody in the dif. eq. by their power series.

Each order (z™) gives an equation for the c’s.

Usually, nth order gives an equation for c¢,, in terms of ¢i, k < n.
Without an initial condition, there is a free parameter, often cy.
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Dif Eq 6.1: Phase plane analysis (2/25)

Autonomous system of first order equations:

dx

- p

dy

% — Q(fﬂa y)

At point (z,y), graph the vector (P(x,y), Q(z,y)).
Solutions must follow this vector field

Equilibrium solutions:
x(t) = xo, y(t) = yo is a solution if
P(.T(),y()) — 07 Q(x())y()) = 0.
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Dif Eq 6.2: 1st order systems/ 2nd order DE
25)

A systergu of first order differential equations:
& — P(t,z,y), ¥=Q(xy)

Initial condition is z(tg) = xq, y(to) = Yo-

to, xo, yo are constants.

Second order differential equation:

2
275 = R(t,z, ‘Cll—f)
Initial conditions: z(to) = xo, 2 (ty) = x

Boundary value problem: z(a) = xg, z(b) = 1

Second order dif eq as first order system:

Let y = 42 and the second order dif. eq. can be written as the first
order system

Z—f:y, %:R(tvxay)

This means that techniques for first order systems can be applied to
second order dif. egs.
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Dif Eq 6.3: Const coef, hom., linear 2nd order

Second order homogeneous linear dif. eq. with constant coefs:
ax’” +bx’ +cx =0
Solve the characteristic equation: ar? + br 4 ¢ = 0.

Two distinct real roots (b% — 4ac > 0):

Let r1, ro be the roots. General solution is
c1 exp(rit) + co exp(rat)

Two complex roots (b? — 4ac < 0):

Let o = i3 be the roots. General solution is
c1 exp(at) sin(0Bt) + co exp(at) cos(5t)

One double real root (b? — 4ac = 0):

Let » be the root. General solution is
c1 exp(rt) + caot exp(rt)
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Dif Eq : More on autonomous systems (3/5)
Consider an autonomous first order system
&% = P(x,y), % =0Q(z,y)

Equilibrium solutions:
|f ((EQ, yo) IS such that P(ZEQ, yo) = 0, Q(.CIZQ, yo) = 0,
then z(t) = xo, y(t) = yo is an equilibrium solution.

Trajectories in phase plane :

Try to find an equation for the curve (x(%),y(t)) in the x — y plane.

dy dydt ¢y  Qz,y)

de dtdr x  P(x,y)

Solve this dif. eq.
NB: this only gives the trajectory, not the time dependence of the

solution.

Math 250b

Daily highlights — p.17/2!



7.1: General solutions - Iinear dif. eq. (3/12)

Linear homogeneous: aq(t)z” + a1 (t)x’ + ag(t)x =0
General solution: x(t) = ci1x1(t) + coxa(t)
where z(t) and x»(t) are different solutions of dif. eq.

Linear (inhomogeneous) : as(t)x” + a1 (t)x’ + ag(t)x = f(t)

General solution: z(t) = x,(t) + c1z1(t) + caxa(t)

where z,(t) is a particular solution of the inhomogeneous dif. eq. and
x1(t) and x4 (t) are different solutions of homogeneous dif. eq.
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7.2: Undetermined coefficients (3/12)

Constant coef, linear:
asx” + a17’ + agr = f(1)

where ag, a1, as are constants. This is a method for finding a particular
solution by guessing.

f(t) = ae®, guess = Ae

f(t) =bg+bit+---+b,t", guess = Byg+ Bit+---+ Bpt"

f(t) = asin(wt) + beos(wt), guess = Asin(wt) + B cos(wt)

f(t) = (bg + b1t + -+ bt™)e, guess = (Bg+ Byt + -+ - + Bpt™)e

f(t) = (b + -+ + bpt™) sin(wt)e + (co + - - - + cnt™) cos(wt)e,
guess = (Bg + -+ - + But") sin(wt)e + (Co + - - - + Cpt") cos(wt e

If guess gives 0 in place of f(t), try multiplying guess by t.
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9.1: Constant coef linear systems (3/28)
Constant coef, linear system:

/

xr = ax+ by

/

Yy = cxr+dy

Equilibrium at (0, 0).

To solve it, compute =", eliminate v', y to get second order dif eq for .
Solve it by characteristic equation.

Stable node (sink) : Real roots, both < 0.

Unstable node (source) : Real roots, both > 0.

Saddle : Real roots, one < 0, one > 0.

Stable spiral (focus) : Complex roots « & i3 with o« < 0.

Unstable spiral (focus) : Complex roots « £ i with o« > 0.

Periodic (center) : Complex roots a £ ¢4 with o = 0.
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9.5: Linear algebra approach (4/7)

Multiplication; determinant
a b x\ [ ax+ by a b\ _ .
(¢ ) (5)= (530) o (2 0) o
Eigenvalues of a b are roots of det [ ¢~ A b = 0.
c d c d—

A
Eigenvector for \ is a solution (xo ) of (a b) 0 ) =\ (xo )
Yo c d)\ o Yo

Given eigenvalue )\ and eigenvector ( 0 )

IS a solution of

io)=(a)Ge)



8.2: Reduction of order (4/14)

Want to solve

az(t)a” (t) + a1 (t)x'(t) + ao(t)z(t) = f ()
given a solution xj,(t) of

az(t)ay (t) + a1 (t)wy, (t) + ao(t)zn(t) =0

The trick: Look for a solution of the form z(t) = x(¢)2(%).

The miracle: The dif. eq. for z will involve 2z’ and 2", but not z.
So it is really a first order equation for z’.
Solve for z/, then for z and finally for x.

Special case: f(t) can be 0. So you can use one solution of the

homogeneous equation to find another solution of the homogeneous
equation.

Math 250b Daily highlights — p.22/2!



8.3: Variation of parameters (4/16)

Want to solve
az(t)x" (t) + a1 ()2’ (t) + ap(t)x(t) = f(¢)

given two solutions x1(t) and x5 (t) of the homogeneous eq.
az(t)ay (t) + ar(t)a,(t) + ao(t)zn(t) =0

The trick: Look for a solution of the form z(t) = x1(¢)21(t) + x2(t)22(1).
This will work provided z;(¢) and z»(t) satisfy

/ /
21T1 + 2902 = 0

/! ! o
21T T 29y = —

Solve the above two equations for the two unknowns 27, z5. Then
integrate to get z; and zs.
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10.1: Non-Ilinear autonomous systems (4/21)

We can draw phase planes for

' = P(z,y)
y = Qxz,y)

Equilibrium solutions: z(t) = zq, y(t) = yo where constants g, yg
simultaneously satisfy P(xqg,y9) =0, Q(xg,y0) = 0.

Periodic solutions correspond to closed trajectories or orbits in the
phase plane.

For a stable equilibrium the basin of attraction is the set of points that
flow to the equilibrium.

/

Yy

.’.U/

Trajectories or orbits solve %

A separatrix is a trajectory or orbit that separates qualitatively different
behaviors of the solutions. Typically a separatrix will start or end at an
equilibrium or go between two equilibria.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
The linearized system: about (xg,yg) IS

' = Py(xo,y0)(r —x0) + Py(r0,y0)(y — yo)
Yy = Qu(xo,y0)(r —0) + Qy(x0,%0) (¥ — ¥o)

Subscripts x, y mean partial derivatives with repect to x, y.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
The linearized system: about (xg,yg) IS

/

v = Py(xo,yo0)(x — x0) + Py(T0,90)(¥ — Y0)
Yy = Qu(xo,y0)(r —0) + Qy(x0,%0) (¥ — ¥o)

Subscripts x, y mean partial derivatives with repect to x, y.

Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
The linearized system: about (xg,yg) IS

/

v = Py(xo,yo0)(x — x0) + Py(T0,90)(¥ — Y0)
Yy = Qu(xo,y0)(r —0) + Qy(x0,%0) (¥ — ¥o)

Subscripts x, y mean partial derivatives with repect to x, y.

Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
The linearized system: about (xg,yg) IS

/

v = Py(xo,yo0)(x — x0) + Py(T0,90)(¥ — Y0)
Yy = Qu(xo,y0)(r —0) + Qy(x0,%0) (¥ — ¥o)

Subscripts x, y mean partial derivatives with repect to x, y.

Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.

2. If the linear system has an unstable node with equal roots, then the
non-linear system can have an unstable node or an unstable focus.
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10.3: Linearization (4/23)

Let (zq, yo) be an equilibrium point.
The linearized system: about (xg,yg) IS

/

v = Py(xo,yo0)(x — x0) + Py(T0,90)(¥ — Y0)
Yy = Qu(xo,y0)(r —0) + Qy(x0,%0) (¥ — ¥o)

Subscripts x, y mean partial derivatives with repect to x, y.

Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.

2. If the linear system has an unstable node with equal roots, then the
non-linear system can have an unstable node or an unstable focus.

3. If the linear system has a stable node with equal roots, then the
non-linear system can have a stable node or a stable focus.
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