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Calc 7.7: Improper integrals (1/16)
Improper limits

∫

∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx, if limit exists

∫

∞

−∞

f(x) dx =

∫ c

−∞

f(x) dx+

∫

∞

c

f(x) dx, if both integrals on right exist

Improper integrand: if f(x) is continuous on a ≤ x < b, but blows up as
x → b,

∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx, if limit exists

If f(x) blows up at interior point c, a < c < b, then
∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx, if both integrals on right exist
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Calc 7.8: Comparison of Improper
∫

’s (1/18)
Comparison Test:
Let f(x) and g(x) be non-negative functions with f(x) ≤ g(x) for x ≥ c.
If

∫

∞

c
g(x) dx converges, then

∫

∞

c
f(x) dx converges.

If
∫

∞

c
f(x) dx diverges, then

∫

∞

c
g(x) dx diverges.

There is a similar statement for improper integrals where the integrand
blows up.

Useful comparison integrals:
∫

∞

1
1

xp dx converges if p > 1 and diverges if p ≤ 1.
∫ 1

0
1

xp dx converges if p < 1 and diverges if p ≥ 1.
∫

∞

0
eax dx converges if a < 0 and diverges if a ≥ 0.
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Calc 9.1: Sequences (1/23)
A sequence is an infinite list of numbers, s1, s2, s3, · · ·.
More precisely, it is a function from the natural numbers
N = {1, 2, 3, 4, · · ·} to the real numbers R.

Convergence: We say that a sequence sn conveges to a real number
L, if for every positive real number ε we can find a positive integer N
such that |sn − L| < ε whenever n ≥ N . We say the sequence sn

diverges if there is no such L.

We say a sequence sn is bounded if there are numbers K and M such
that K ≤ sn ≤ M for n = 1, 2, 3, · · ·.

We say a sequence is increasing if sn ≤ sn+1 for n = 1, 2, 3, · · ·.
It is decreasing if sn ≥ sn+1 for n = 1, 2, 3, · · ·.
It is monotone if it is increasing or decreasing.

Theorem: Every convergent sequence is bounded.
Theorem: Every bounded monotone sequence converges.
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Calc 9.2: Geometric Series (1/25)
A geometric series is a series of the form

1 + x + x2 + x3 + · · · =
∞
∑

n=0

xn

If |x| < 1, then
∞
∑

n=0

xn =
1

1 − x

If x 6= 1, then
n

∑

k=0

xk =
1 − xn+1

1 − x
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Calc 9.3: Convergence of Series (1/28)
The partial sums of

∑

∞

k=1 ak are sn =
∑n

k=1 ak. The series
converges to L if the sequence of partial sums converges to L.

Integral test: Suppose f(x) is a decreasing, positive function for x ≥ c
and an = f(n).
If

∫

∞

c
f(x) dx converges, then

∑

n an converges.
If

∫

∞

c
f(x) dx diverges, then

∑

n an diverges.

Application:
∑

n n−p converges if p > 1 and diverges if p ≤ 1.

Some properties:
1. If

∑

n an and
∑

n bn both converge, then
∑

n(can + dbn) converges
to c

∑

n an + d
∑

n bn.
2. Changing a finite number of terms does not change whether a
series converges.
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Calc 9.4: More tests for convergence (1/30)
Comparison test: Suppose 0 ≤ an ≤ bn.
If

∑

n bn converges, then
∑

n an converges
If

∑

n an diverges, then
∑

n bn diverges

Absolute convergence : We say
∑

n an converges absolutely if
∑

n |an|

converges. If
∑

n an converges absolutely then it converges.

Application:
∑

n n−p converges if p > 1 and diverges if p ≤ 1.

Ratio test:
For the series

∑

n an, suppose the sequence |an+1|/|an| conveges:

lim
n→∞

|an+1|

|an|
= L

If L < 1 then the series
∑

n an converges.
If L > 1 then the series

∑

n an diverges.
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Calc 9.4: continued (2/1)
Limit comparison test:
Suppose bn > 0, an > 0 and limn→∞

an

bn

exists and is nonzero.
Then

∑

n an converges if and only if
∑

n bn converges.

Alternating series test:
Suppose an > 0, an+1 ≤ an and the sequence an converges to zero.
Then

∑

n (−1)n an converges.
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Calc 9.5: Power series (2/4)
A power series about a is a series of the form

∞
∑

n=1

cn(x − a)n

Radius of convergence Every power series has a radius of
convergence R ∈ [0,∞] with the properties that
if |x − a| < R then the series converges absolutely and
if |x − a| > R then the series diverges.

Finding R: Use the ratio test. The condition L < 1 will give you a
condition on x which will tell you R.

Complex power series:
∑

∞

n=0 cnzn. All of the above still holds with
|x + iy| defined to be

√

x2 + y2.
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Calc 10.1: Taylor polynomials (2/6)
The Taylor polynomial of degree n of f(x) about a is

pn(x) f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3

+ · · · +
f (n)(a)

n!
(x − a)n

=
n

∑

k=0

f (k)(a)

k!
(x − a)k

where f (k) denotes the kth derivation of f .

It is the polynomial that best approximates f near x = a in the sense
that the value of this polynomial and its first n derivatives at x = a
agree with those of f(x).
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Calc 10.2: Taylor series (2/8)
The Taylor series of f(x) about a is

∞
∑

n=0

f (n)(a)

n!
(x − a)n

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞
∑

n=0

xn

n!

sinx = x −
x3

3!
+

x5

5!
− · · · =

∞
∑

n=0

(−1)n x2n+1

(2n + 1)!

cosx = 1 −
x2

2!
+

x4

4!
− · · · =

∞
∑

n=0

(−1)n x2n

(2n)!

ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ · · · =

∞
∑

n=1

(−1)n+1 xn

n

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + · · ·
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Calc 10.3: Shortcuts, applications of T.S. (2/11)
Products: Taylor series of fg is product of T.S. of f and T.S. of g.
For Taylor polynomial of degree n, use Taylor polynomials of degree n
for f and g, BUT throw out terms of degree > n.
Substitution: For Taylor series of f(xp), substitute xp into T.S. of f(x).
Taylor polynomial of f of degree n will give Taylor polynomial of degree
np for f(xp) when you do this.
Composition: If g(0) = 0 we can get T.S. about 0 of f(g(x)) by
substituting T.S. of g(x) for the argument in T.S. of f(x).
For polynomials, again throw out terms you get with degree > n.
Integration/differentiation: You can integrate or differentiate Taylor
series you already know to generate new ones.
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Calc 10.4: Error and convergence (2/15)
Error for nth order Taylor polynomial:

|f(x) − Pn(x)| ≤
Mn+1

(n + 1)!
|x − a|n+1

Mn+1 is max of |f (n+1)| over interval from a to x.
Series convergence: For a given x, if you can show the error in the
Taylor polynomial goes to 0 as n → ∞, then at x, the Taylor series
converges to the function.
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Dif Eq 3.5: Power series solutions (2/18)
Power series solution of dif eq about 0: We assume the solution has a
power series expansion about 0:

y(x) =

∞
∑

n=0

cnxn

y′(x) =

∞
∑

n=1

cnnxn−1 =

∞
∑

n=0

cn+1(n + 1)xn

Find the Taylor expansions of any functions of x in the equation.
Replace everybody in the dif. eq. by their power series.
Each order (xn) gives an equation for the c’s.
Usually, nth order gives an equation for cn in terms of ck, k < n.
Without an initial condition, there is a free parameter, often c0.
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Dif Eq 6.1: Phase plane analysis (2/25)
Autonomous system of first order equations:

dx

dt
= P (x, y)

dy

dt
= Q(x, y)

At point (x, y), graph the vector (P (x, y), Q(x, y)).
Solutions must follow this vector field
Equilibrium solutions:
x(t) = x0, y(t) = y0 is a solution if
P (x0, y0) = 0, Q(x0, y0) = 0.
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Dif Eq 6.2: 1st order systems/ 2nd order DE
(2/25)

A system of first order differential equations:
dx
dt

= P (t, x, y), dy

dt
= Q(t, x, y)

Initial condition is x(t0) = x0, y(t0) = y0.
t0, x0, y0 are constants.
Second order differential equation:
d2x
dt2

= R(t, x, dx
dt

)

Initial conditions: x(t0) = x0,
dx
dt

(t0) = x∗

0

Boundary value problem: x(a) = x0, x(b) = x1

Second order dif eq as first order system:
Let y = dx

dt
and the second order dif. eq. can be written as the first

order system
dx
dt

= y, dy

dt
= R(t, x, y)

This means that techniques for first order systems can be applied to
second order dif. eqs.
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Dif Eq 6.3: Const coef, hom., linear 2nd order
Second order homogeneous linear dif. eq. with constant coefs:
ax′′ + bx′ + cx = 0
Solve the characteristic equation: ar2 + br + c = 0.

Two distinct real roots (b2 − 4ac > 0):
Let r1, r2 be the roots. General solution is
c1 exp(r1t) + c2 exp(r2t)

Two complex roots (b2 − 4ac < 0):
Let α ± iβ be the roots. General solution is
c1 exp(αt) sin(βt) + c2 exp(αt) cos(βt)

One double real root (b2 − 4ac = 0):
Let r be the root. General solution is
c1 exp(rt) + c2t exp(rt)

Math 250b Daily highlights – p.16/25



Dif Eq : More on autonomous systems (3/5)
Consider an autonomous first order system
dx
dt

= P (x, y), dy

dt
= Q(x, y)

Equilibrium solutions:
If (x0, y0) is such that P (x0, y0) = 0, Q(x0, y0) = 0,
then x(t) = x0, y(t) = y0 is an equilibrium solution.
Trajectories in phase plane :
Try to find an equation for the curve (x(t), y(t)) in the x − y plane.

dy

dx
=

dy

dt

dt

dx
=

y′

x′
=

Q(x, y)

P (x, y)

Solve this dif. eq.
NB: this only gives the trajectory, not the time dependence of the
solution.
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7.1: General solutions - linear dif. eq. (3/12)
Linear homogeneous: a2(t)x

′′ + a1(t)x
′ + a0(t)x = 0

General solution: x(t) = c1x1(t) + c2x2(t)
where x1(t) and x2(t) are different solutions of dif. eq.

Linear (inhomogeneous) : a2(t)x
′′ + a1(t)x

′ + a0(t)x = f(t)
General solution: x(t) = xp(t) + c1x1(t) + c2x2(t)

where xp(t) is a particular solution of the inhomogeneous dif. eq. and
x1(t) and x2(t) are different solutions of homogeneous dif. eq.
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7.2: Undetermined coefficients (3/12)
Constant coef, linear:

a2x
′′ + a1x

′ + a0x = f(t)

where a0, a1, a2 are constants. This is a method for finding a particular
solution by guessing.

f(t) = aect, guess = Aect

f(t) = b0 + b1t + · · · + bntn, guess = B0 + B1t + · · · + Bntn

f(t) = a sin(ωt) + b cos(ωt), guess = A sin(ωt) + B cos(ωt)

f(t) = (b0 + b1t + · · · + bntn)ect, guess = (B0 + B1t + · · · + Bntn)ect

f(t) = (b0 + · · · + bntn) sin(ωt)ect + (c0 + · · · + cntn) cos(ωt)ect,

guess = (B0 + · · · + Bntn) sin(ωt)ect + (C0 + · · · + Cntn) cos(ωt)ect

If guess gives 0 in place of f(t), try multiplying guess by t.
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9.1: Constant coef linear systems (3/28)
Constant coef, linear system:

x′ = ax + by

y′ = cx + dy

Equilibrium at (0, 0).
To solve it, compute x′′, eliminate y′, y to get second order dif eq for x.
Solve it by characteristic equation.
Stable node (sink) : Real roots, both < 0.
Unstable node (source) : Real roots, both > 0.
Saddle : Real roots, one < 0, one > 0.
Stable spiral (focus) : Complex roots α ± iβ with α < 0.
Unstable spiral (focus) : Complex roots α ± iβ with α > 0.
Periodic (center) : Complex roots α ± iβ with α = 0.
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9.5: Linear algebra approach (4/7)
Multiplication; determinant

(

a b
c d

) (

x
y

)

=

(

ax + by
cx + dy

)

, det

(

a b
c d

)

= ad − bc

Eigenvalues of
(

a b
c d

)

are roots of det

(

a − λ b
c d − λ

)

= 0.

Eigenvector for λ is a solution
(

x0

y0

)

of
(

a b
c d

)(

x0

y0

)

= λ

(

x0

y0

)

Given eigenvalue λ and eigenvector
(

x0

y0

)

,

(

x(t)
y(t)

)

= eλt

(

x0

y0

)

is a solution of

d

dt

(

x(t)
y(t)

)

=

(

a b
c d

)(

x(t)
y(t)

)
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8.2: Reduction of order (4/14)
Want to solve

a2(t)x
′′(t) + a1(t)x

′(t) + a0(t)x(t) = f(t)

given a solution xh(t) of

a2(t)x
′′

h(t) + a1(t)x
′

h(t) + a0(t)xh(t) = 0

The trick: Look for a solution of the form x(t) = xh(t)z(t).
The miracle: The dif. eq. for z will involve z′ and z′′, but not z.
So it is really a first order equation for z′.
Solve for z′, then for z and finally for x.

Special case: f(t) can be 0. So you can use one solution of the
homogeneous equation to find another solution of the homogeneous
equation.
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8.3: Variation of parameters (4/16)
Want to solve

a2(t)x
′′(t) + a1(t)x

′(t) + a0(t)x(t) = f(t)

given two solutions x1(t) and x2(t) of the homogeneous eq.

a2(t)x
′′

h(t) + a1(t)x
′

h(t) + a0(t)xh(t) = 0

The trick: Look for a solution of the form x(t) = x1(t)z1(t) + x2(t)z2(t).
This will work provided z1(t) and z2(t) satisfy

z′1x1 + z′2x2 = 0

z′1x
′

1 + z′2x
′

2 =
f

a2

Solve the above two equations for the two unknowns z′

1, z
′

2. Then
integrate to get z1 and z2.
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10.1: Non-linear autonomous systems (4/21)
We can draw phase planes for

x′ = P (x, y)

y′ = Q(x, y)

Equilibrium solutions: x(t) = x0, y(t) = y0 where constants x0, y0

simultaneously satisfy P (x0, y0) = 0, Q(x0, y0) = 0.
Periodic solutions correspond to closed trajectories or orbits in the
phase plane.

For a stable equilibrium the basin of attraction is the set of points that
flow to the equilibrium.

Trajectories or orbits solve dy

dx
= y′

x′

A separatrix is a trajectory or orbit that separates qualitatively different
behaviors of the solutions. Typically a separatrix will start or end at an
equilibrium or go between two equilibria.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
The linearized system: about (x0, y0) is

x′ = Px(x0, y0)(x − x0) + Py(x0, y0)(y − y0)

y′ = Qx(x0, y0)(x − x0) + Qy(x0, y0)(y − y0)

Subscripts x, y mean partial derivatives with repect to x, y.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
The linearized system: about (x0, y0) is

x′ = Px(x0, y0)(x − x0) + Py(x0, y0)(y − y0)

y′ = Qx(x0, y0)(x − x0) + Qy(x0, y0)(y − y0)

Subscripts x, y mean partial derivatives with repect to x, y.
Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
The linearized system: about (x0, y0) is

x′ = Px(x0, y0)(x − x0) + Py(x0, y0)(y − y0)

y′ = Qx(x0, y0)(x − x0) + Qy(x0, y0)(y − y0)

Subscripts x, y mean partial derivatives with repect to x, y.
Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
The linearized system: about (x0, y0) is

x′ = Px(x0, y0)(x − x0) + Py(x0, y0)(y − y0)

y′ = Qx(x0, y0)(x − x0) + Qy(x0, y0)(y − y0)

Subscripts x, y mean partial derivatives with repect to x, y.
Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.

2. If the linear system has an unstable node with equal roots, then the
non-linear system can have an unstable node or an unstable focus.
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10.3: Linearization (4/23)
Let (x0, y0) be an equilibrium point.
The linearized system: about (x0, y0) is

x′ = Px(x0, y0)(x − x0) + Py(x0, y0)(y − y0)

y′ = Qx(x0, y0)(x − x0) + Qy(x0, y0)(y − y0)

Subscripts x, y mean partial derivatives with repect to x, y.
Linearization theorem: The nature (saddle, stable/unstable node,
stable/unstable focus, center) of the non-linear system is the same as
that of the linear system with the following exceptions.

1. If the linear system has a center, the non-linear system can have a
center, stable focus or unstable focus.

2. If the linear system has an unstable node with equal roots, then the
non-linear system can have an unstable node or an unstable focus.

3. If the linear system has a stable node with equal roots, then the
non-linear system can have a stable node or a stable focus.
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