Math 250b (Spring '08) - Homework 12

1. Consider

$$
t^{2} x^{\prime \prime}-2 t x^{\prime}+2 x=t^{2} \ln (t)
$$

(a) Find two solutions of the homogeneous equation. Hint: try a solution of the form x^{p}.
(b) Use your two solutions from (a) and variation of parameters to find a particular solution of the inhomogeneous equation.
2. Consider the homogeneous second order equation

$$
a_{2}(t) x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t) x=0
$$

Let a, b, c, d be real numbers. Let $x_{1}(t)$ be the solution with

$$
\begin{equation*}
x_{1}(0)=a, \quad x_{1}^{\prime}(0)=b \tag{1}
\end{equation*}
$$

Let $x_{2}(t)$ be the solution with

$$
\begin{equation*}
x_{2}(0)=c, \quad x_{2}^{\prime}(0)=d \tag{2}
\end{equation*}
$$

Show that x_{1} and x_{2} are linearly independent if and only if the determinant of the following matrix is not zero:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

