Math 250b (Spring '08) - Homework 4

1. The nth order Taylor polynomial of e^{x} about 0 is

$$
\begin{equation*}
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

(a) Find the nth order Taylor polynomials of $e^{i x}$ and $e^{-i x}$ about 0 .
(b) Recall that

$$
\begin{equation*}
\cos (x)=\frac{e^{i x}+e^{-i x}}{2}, \quad \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i} \tag{2}
\end{equation*}
$$

Use there formulas and your answers to (a) to find the nth order Taylor polynomials of $\cos (x)$ and $\sin (x)$ about 0 . (Of course, you should get the same answer we got before.)

