Sample Exam 2 - Math 464/564-Spring 07 -Kennedy

 Show your work! Correct answers with no work get no points.1. Let X be a continuous random variable that is uniformly distributed on $[-1,1]$. Let $Y=X^{3}$.
(a) Find the mean and variance of Y.
(b) Find the probability density function (pdf) of Y.
2. Let X and Y be continuous random variables with joint pdf

$$
f_{X, Y}(x, y)=\frac{3}{2}\left(x^{2}+y^{2}\right), \quad 0 \leq x \leq 1,0 \leq y \leq 1
$$

Outside of $0 \leq x \leq 1,0 \leq y \leq 1, f_{X, Y}(x, y)=0$.
(a) Are X and Y independent?
(b) Compute $P(X \leq Y)$ and $P(2 X \leq Y)$.
3. Let n, m be positive integers and let $0<p<1,0<q<1$. Let X and Y be discrete random variables with joint pmf

$$
f_{X, Y}(j, k)=\binom{n}{j}\binom{m}{k} p^{j}(1-p)^{n-j} q^{k}(1-q)^{m-k}
$$

where $j=0,1,2, \cdots, n$ and $k=0,1,2, \cdots, m$.
(a) Are X and Y independent?
(b) Find the mean and variance of $Z=X+Y$.
4. Let X be a Poisson random variable with parameter λ. Let $Y=X+1$. (a) Find the moment generating function of Y.
(b) Use your moment generating function to compute the mean and variance of Y. (Note that you can check your work by computing the mean and variance of Y from the mean and variance of X.)

