Sample Exam 2 Answers - Math 464/564-Spring 07 -Kennedy

1. (a) Using law of the unconscious mathematician,

$$
\mu=E[Y]=\int_{-1}^{1} x^{3} \frac{1}{2} d x=0
$$

Since the mean is zero, the variance is

$$
\sigma^{2}=E\left[Y^{2}\right]=\int_{-1}^{1} x^{6} \frac{1}{2} d x=\frac{1}{7}
$$

(b) Note that the range of Y is $[-1,1]$. Compute the cdf and then differentiate it.

$$
f_{Y}(y)=\frac{1}{6} y^{-2 / 3}, \quad-1 \leq y \leq 1
$$

2. (a) First compute the marginals:

$$
\begin{gathered}
f_{X}(x)=\int_{0}^{1} \frac{3}{2}\left(x^{2}+y^{2}\right) d y=\frac{1}{2}+\frac{3}{2} x^{2}, \quad 0 \leq x \leq 1 \\
f_{Y}(y)=\frac{1}{2}+\frac{3}{2} y^{2}, \quad 0 \leq y \leq 1
\end{gathered}
$$

Their product is not $f_{X, Y}(x, y)$, so X and Y are not independent. (b)

$$
\begin{gathered}
P(X \leq Y)=\int_{0}^{1}\left(\int_{0}^{y} \frac{3}{2}\left(x^{2}+y^{2}\right) d x\right) d y=\frac{1}{2} \\
P(2 X \leq Y)=\int_{0}^{1}\left(\int_{0}^{y / 2} \frac{3}{2}\left(x^{2}+y^{2}\right) d x\right) d y=\frac{13}{64}
\end{gathered}
$$

3. To test independence, we need the marginals:

$$
\begin{aligned}
f_{X}(j) & =\sum_{k=0}^{m}\binom{n}{j}\binom{m}{k} p^{j}(1-p)^{n-j} q^{k}(1-q)^{m-k} \\
& =\binom{n}{j} p^{j}(1-p)^{n-j} \sum_{k=0}^{m}\binom{m}{k} q^{k}(1-q)^{m-k} \\
& =\binom{n}{j} p^{j}(1-p)^{n-j}
\end{aligned}
$$

Thus X is binomial with n trials and probability p of success. Similarly,

$$
f_{Y}(k)=\binom{m}{k} q^{k}(1-q)^{m-k}
$$

Thus Y is binomial with m trials and probability q of success. The product of the marginal pmf's is the joint pmf, so they are independent.
(b)

$$
E[Z]=E[X]+E[Y]=n p+m q
$$

Using the independence of X and Y,

$$
\operatorname{var}(Z)=\operatorname{var}(X)+\operatorname{var}(Y)=n p(1-p)+m q(1-q)
$$

4. (a)

$$
M_{X}(t)=\exp \left(t+\lambda\left(e^{t}-1\right)\right)
$$

(b) $\mu=\lambda+1, \sigma^{2}=\lambda$

