Sample Final Exam Answers- Math 464/564-Spring 07 -Kennedy

1. (a) $5 / 24$
(b) $3 / 5$
2. (a) $7 / 8$
(b) $11 / 7$.
3. (a)

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	$\mathrm{Y}=2$
$\mathrm{X}=0$	$16 / 36$	$8 / 36$	$1 / 36$
$\mathrm{X}=1$	$8 / 36$	$2 / 36$	0
$\mathrm{X}=2$	$1 / 36$	0	0

(b) No. For example, $P(X=2, Y=2)=0$. But $P(X=2)>0$ and $P(Y=2)>0$, so $P(X=2, Y=2) \neq P(X=2) P(Y=2)$.
(c) $E(X Y)=1 / 18$.
4.

$$
f_{Y}(y)=\frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} e^{-y^{2} / 2}, \quad y \geq 0
$$

5. (a)

$$
\begin{array}{ll}
f_{X}(x)=\frac{6}{7} x^{2}+\frac{6}{7} x+\frac{2}{7}, & 0 \leq x \leq 1 \\
f_{Y}(y)=\frac{6}{7} y^{2}+\frac{6}{7} y+\frac{2}{7}, & 0 \leq y \leq 1
\end{array}
$$

(b) No, X and Y are not independent. $f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)$.
6. (a) $P(Z<1 / 2)=1 / 4$
(b) The cdf is $F_{Z}(z)=z^{2}, \quad 0 \leq z \leq 1$. So the pdf is $f_{Z}(z)=2 z, \quad 0 \leq z \leq 1$, and $f_{Z}(z)=0$ for z outside $[0,1]$.
7. (a) Differentiate the equation and then set $t=0$ to find $M^{\prime}(0)=0$. So the mean is zero.
(b) Differentiate the equation and then set $t=0$ to find $M^{\prime}(0)=M(0) / 2$. Since $M(0)=1$ for any RV, the mean is $1 / 2$.
8. (a) The Jacobian works out to $1 / 2$. The region $x, y \geq 0$ is mapped to the region in the right half plane bounded by the lines $v=u$ and $v=-u$. This region may be written as $|v| \leq u$.

$$
f_{U, V}(u, v)=\frac{1}{2} e^{-u}, \quad|v| \leq u
$$

(b) You can use the joint pdf of U, V to compute it. Or just use $E[U V]=$ $E\left[X^{2}-Y^{2}\right]=E\left[X^{2}\right]-E\left[Y^{2}\right]=0$.
(c) The marginals work out to

$$
\begin{array}{r}
f_{U}(u)=u e^{-u}, \quad u \geq 0 \\
f_{V}(v)=\frac{1}{2} e^{-|v|}, \quad-\infty<v<\infty \tag{1}
\end{array}
$$

So their product is not equal to the joint pdf and so U and V are not independent.
9. Let X and Y be independent random variables, each of which has the standard normal density. Let $Z=2 X+Y-5$.
(a) We know that the sum of independent normals is normal, and if you shift a normal RV it is still normal. So Z has a normal distribution with $\mu=-5$, $\sigma^{2}=4+1=5$. So

$$
f_{Z}(z)=\frac{1}{\sqrt{10 \pi}} \exp \left(-\frac{(x+5)^{2}}{10}\right)
$$

(b) $E[Z \mid X]=E[2 X+Y-5 \mid X]=2 X+E[Y]-5=2 X-5$
10. (a) X_{i} has mean 1 and variance 2 , so X has mean n and variance $2 n$.
(b) Note : in an earlier version I mistakenly forgot to take the square root of the variance in the following. $0.95=P(X-n<c)=P\left(\frac{X-n}{\sqrt{2 n}}<\frac{c}{\sqrt{2 n}}\right) \approx$ $P\left(Z<\frac{c}{\sqrt{2 n}}\right)$ This implies $P\left(|Z|<\frac{c}{\sqrt{2 n}}\right)=0.9$, so $c / \sqrt{2 n}=1.64$ and so $c=1.64 \sqrt{2 n}$. (Here Z is a standard normal.)

