Math 464 - Fall 10 - Project II

The goal of this project is to illustrate the weak and strong law of large numbers and the central limit theorem. Choose a random variable X which has finite variance but does not have a normal distribution. Let X_1, X_2, X_3, \cdots be independent random variables, all of which have the same distribution as X. Let

$$\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$$

(a) For n = 10,100 and 1000, generate a large number of samples of \overline{X}_n and use them to plot histograms of \overline{X}_{10} , \overline{X}_{100} , and \overline{X}_{1000} . Note that to generate each sample of \overline{X}_n you have to generate n samples of X.

(b) Which law of large numbers (weak or strong) is illustrated by your three histograms in (a)? Explain your answer.

(c) Now generate a single sequence $X_1, X_2, \dots, X_{10000}$. For each $n = 1, 2, \dots, 10000$, compute \overline{X}_n for this sequence and then plot \overline{X}_n as a function of n.

(d) Which law of large numbers (weak or strong) is illustrated by your graph in (c)? Explain your answer.

(e) Now let

$$Y_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n (X_j - \mu)$$

where μ is the mean of X. For n = 10, 100 and 1000, generate a large number of samples of Y_n and use them to plot histograms of Y_{10} , Y_{100} , and Y_{100} .

(f) The central limit theorem gives an approximation to the distributions of Y_{10} , Y_{100} , and Y_{100} . What is it? Explain how your histrograms in (e) illustrate the central limit theorem.