Sample Exam 2 - Math 464 - Fall 10 -Kennedy

The questions on this sample exam are meant to be representative of the questions that will be on the exam. However, if a topic does not appear on the sample exam that does not mean it will not appear on the exam. This sample exam is probably slightly too long for a real exam.

1. Let X have a gamma distribution with $\lambda=2, w=3$. Let $Y=3 X$. Show that Y has a gamma distribution and find the values of λ and w for Y. (Hint: how is the moment generating function of Y related to that of X ?)
2. Let Z have a standard normal distrbution. (So its mean is 0 and its variance is 1.) Let $X=e^{-Z}$.
(a) Find the mean and variance of X.
(b) Find the probability density function (pdf) for X.
3. Let X and Y be continuous random variables with joint pdf

$$
f_{X, Y}(x, y)=\frac{3}{2}\left(x^{2}+y^{2}\right), \quad 0 \leq x \leq 1,0 \leq y \leq 1
$$

Outside of $0 \leq x \leq 1,0 \leq y \leq 1, f_{X, Y}(x, y)=0$.
(a) Find the marginal densities of X and Y
(b) Are X and Y independent?
4. X and Y are independent continuous random variables. X is uniformly distributed on $[-1,1]$. Y has an exponential distribution with $\lambda=1$.
(a) Let $Z=2 X+Y$. Find the mean and variance of Z.
(b) Compute the probability density function, $f_{Z}(z)$, of Z for $z \geq 2$.
5. (a) Let X be a standard normal. The odd moments of X are zero. Use the mgf to compute $\mathbf{E}\left[X^{2}\right], \mathbf{E}\left[X^{4}\right]$ and $\mathbf{E}\left[X^{6}\right]$. Hint: Before you go crazy computing derivatives, think about the power series expansion

$$
e^{t^{2} / 2}=1+\frac{t^{2}}{2}+\frac{1}{2}\left[\frac{t^{2}}{2}\right]^{2}+\frac{1}{3!}\left[\frac{t^{2}}{2}\right]^{3}+\cdots
$$

(b) Let X, Y be independent random variables, each with the standard normal distribution. Let $Z=X^{2}+Y^{2}$. Find the mean and variance of Z.
6. Random variables X and Y have joint cumulative distribution function (cdf)

$$
F_{X, Y}(x, y)= \begin{cases}{\left[\frac{1}{\pi} \tan ^{-1}(x)+c\right]\left(1-e^{-y}\right),} & \text { if } y \geq 0 \\ 0, & \text { if } y<0\end{cases}
$$

where c is some constant.
(a) Find the value of c.
(b) Find the joint probability density function (pdf) for X, Y. (Note that you don't need to know the value of c to do this.)
7. The joint pdf of X and Y is

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} x^{2}-x y-y^{2}\right), \quad-\infty<x<\infty,-\infty<y<\infty
$$

Define new random variables by

$$
\begin{aligned}
U & =X+Y \\
V & =2 Y
\end{aligned}
$$

(a) Are X and Y independent?
(b) Find the joint density of U, V.
(b) Are U and V independent?

