Sample Final Exam - Math 464 - Fall 2010 -Kennedy

1. A, B, C are events with $P(A)=0.5, P(A \cup B)=0.7$ and $P(C)=0.2$. A and B are independent. A and C are disjoint. Find the probabilities
(a) $P\left(A^{c} \mid C\right)$. (As always, A^{c} denotes the complement of A.)
(b) $P(B)$
2. I flip a fair coin. If it is heads I roll a four-sided die, and if it is tails I roll a six-sided die.
(a) What is the probability the die roll is 3 .
(b) If the die roll is 3 , what is the probability the coin flip showed heads?
(c) Let X be the number that comes up on the die. Find the mean and variance of X.
3. I flip a fair coin until I get heads.
(a) Find the probability it takes at most 3 flips (including the flip that comes up heads).
(b) Let X be the number of flips it takes (including the flip that gives heads). Compute $E[X \mid X \leq 3]$, the expected value of X given that X is at most 3 .
4. We roll two ordinary six-sided dice. Let X be the number of dice showing a 1 and Y the number of dice showing a 2 . So each of X and Y can be 0,1 or 2 .
(a) Find the joint density of X, Y.
(b) Are X and Y independent. Justify your answer.
(c) Compute $E(X Y)$.
5. Let X have the gamma distribution with $\lambda=1 / 2$ and $w=1 / 2$. Find the p.d.f. of $Y=\sqrt{X}$.
6. Let X and Y be continuous random variables with joint density

$$
f(x, y)= \begin{cases}\frac{6}{7}(x+y)^{2}, & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal densities of X and Y.
(b) Are X and Y independent ?
7. Let X and Y be independent random variables. Each has the exponential distribution with $\lambda=1$. Let $Z=Y-X$.
(a) Find the mean and variance of Z.
(b) Find the pdf of Z.
8. (a) Suppose X is a random variable whose moment generating function $M(t)$ satisfies the equation $M(t)=M(-t)$. Show that the mean of X is 0 . (b) Now suppose the moment generating function $M(t)$ satisfies the equation $M(t)=e^{t} M(-t)$. Find the mean of X.
9. Let X and Y be independent standard normal random variables. Define two new random variables by

$$
\begin{aligned}
U & =X^{2}+Y^{2} \\
W & =X^{2}-Y^{2}
\end{aligned}
$$

(a) Find the joint pdf of U, W.
(b) Are U and W independent random variables? Justify your answer.
10. Let X and Y be independent random variables, each of which has the standard normal density. Let $Z=2 X+Y-5$.
(a) Find the pdf of Z.
(b) Find $E[Z \mid X=x]$.
11. Let $X_{1}, X_{2}, \cdots X_{n}$ be independent continuous random variables. They are identically distributed, i.e., they have the same distribution. Suppose that $E X_{i}=1$ and $E X_{i}^{2}=3$. Define

$$
\begin{equation*}
X=\sum_{i=1}^{n} X_{i} \tag{2}
\end{equation*}
$$

(a) Find the mean and variance of X.
(b) If Z has a standard normal distribution, then $P(|Z|<1.96)=0.95$ and $P(|Z|<1.64)=0.90$. Find c so that for large $n, P(X-n<c)$ is approximately 0.95 . Your answer should depend on n. (Note that it is $X-n$ and not $|X-n|$.)
12. X and Y are discrete random variables with joint pmf

$$
f_{X, Y}(x, y)=\frac{\lambda^{x+y} e^{-2 \lambda}}{x!y!}
$$

where x and y both take on the values $0,1,2,3, \cdots$, and λ is a positive parameter.
(a) Find the marginal pmf's of X and Y.
(b) Find $P(X+Y=k)$. Simplify your answer; don't leave it as a sum.

