
1 Probabilities

1.1 Experiments with randomness

We will use the term experiment in a very general way to refer to some process
that produces a random outcome.
Examples: (Ask class for some first)

Here are some discrete examples:

• roll a die

• flip a coin

• flip a coin until we get heads

And here are some continuous examples:

• height of a U of A student

• random number in [0, 1]

• the time it takes until a radioactive substance undergoes a decay

These examples share the following common features: There is a proce-
dure or natural phenomena called the experiment. It has a set of possible
outcomes. There is a way to assign probabilities to sets of possible outcomes.
We will call this a probability measure.

1.2 Outcomes and events

Definition 1. An experiment is a well defined procedure or sequence of
procedures that produces an outcome. The set of possible outcomes is called
the sample space. We will typically denote an individual outcome by ω and
the sample space by Ω.

Definition 2. An event is a subset of the sample space.

This definition will be changed when we come to the definition of a σ-field.
The next thing to define is a probability measure. Before we can do this

properly we need some more structure, so for now we just make an informal
definition. A probability measure is a function on the collection of events
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that assign a number between 0 and 1 to each event and satisfies certain
properties.

NB: A probability measure is not a function on Ω.
Set notation: A ⊂ B, A is a subset of B, means that every element of

A is also in B. The union A∪B of A and B is the of all elements that are in
A or B, including those that are in both. The intersection A ∩ B of A and
B is the set of all elements that are in both of A and B.

∪n
j=1Aj is the set of elements that are in at least one of the Aj.

∩n
j=1Aj is the set of elements that are in all of the Aj .

∩∞

j=1Aj , ∪∞

j=1Aj are ...
Two sets A and B are disjoint if A ∩ B = ∅. ∅ denotes the empty set,

the set with no elements.
Complements: The complement of an event A, denoted Ac, is the set

of outcomes (in Ω) which are not in A. Note that the book writes it as Ω\A.
De Morgan’s laws:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

(
⋃

j

Aj)
c =

⋂

j

Ac
j

(
⋂

j

Aj)
c =

⋃

j

Ac
j

(1)

Proving set identities To prove A = B you must prove two things
A ⊂ B and B ⊂ A. It is often useful to draw a picture (Venn diagram).

Example Simplify (E ∩ F ) ∪ (E ∩ F c).

1.3 Probability measures

Before we get into the mathematical definition of a probability measure we
consider a bunch of examples. For an event A, P(A) will denote the proba-
bility of A. Remember that A is typically not just a single outcome of the
experiment but rather some collection of outcomes.

What properties should P have?

0 ≤ P(A) ≤ 1 (2)
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P(∅) = 0, P(Ω) = 1 (3)

If A and B are disjoint then

P(A ∪ B) = P(A) + P(B) (4)

Example (roll a die): Then Ω = {1, 2, 3, 4, 5, 6}. If A = {2, 4, 6} is the
event that the roll is even, then P(A) = 1/2.

Example (uniform discrete): Suppose Ω is a finite set and the out-
comes in Ω are (for some reason) equally likely. For an event A let |A| denote
the cardinality of A, i.e., the number of outcomes in A. Then the probability
measure is given by

P(A) =
|A|

|Ω|
(5)

Example (uniform continuous): Pick random number between 0 and
1 with all numbers equally likely. (Computer languages typically have a
function that does this, for example drand48() in C. Strictly speaking they
are not truly random.) The sample space is Ω = [0, 1]. For an interval I
contained in [0, 1], it probability is its length.

More generally, the uniform probability measure on [a, b] is defined by

P([c, d]) =
d − c

b − a
(6)

for intervals [c, d] contained in [a, b].
Example (uniform two dimensional): A circular dartboard is 10in

in radius. You throw a dart at it, but you are not very good and so are
equally likely to hit any point on the board. (Throws that miss the board
completely are done over.) For a subset E of the board,

P(E) =
area(E)

π102
(7)

Mantra: For uniform continuous probability measures, the probability
acts like length, area, or volume.

Example: Roll two four-sided dice. What is the probability we get a 4
and a 3?

Wrong solution
Correct solution
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Example (geometric): Roll a die (usual six-sided) until we get a 1.
Look at the number of rolls it took (including the final roll which was 1).
There are two possible choices for the sample space. We could consider an
outcome to be a sequence of rolls that end with a 1. But if all we care about
is how many rolls it takes, then we can just take the sample space to be
Ω = {1, 2, 3, · · ·}, where the outcome corresponds to how many rolls it takes.
What is the probability of it takes n rolls? This means you get n − 1 rolls
that are not a 1 and then a roll that is a 1. So

P(n) =

(

5

6

)n−1
1

6
(8)

It should be true that if we sum this over all possible n we get 1. To check
this we need to recall the geometric series formula:

∞
∑

n=0

rn =
1

1 − r
(9)

if |r| < 1.

Check normalization. GAP !!!!!!!

Compute P(number of rolls is odd). GAP !!!!!!!

Geometric: We generalize the above example. We start with a simple
experiment with two outcomes which we refer to as success and failure. For
the simple experiment the probability of success is p, and the probability of
failure is 1−p. The experiment we consider is to repeat the simple experiment
until we get a success. Then we let n be the number of times we repeated the
simple experiment. The sample space is Ω = {1, 2, 3, · · ·}. The probability
of a single outcome is given by

P (n) = P ({n}) = (1 − p)n−1p

You can use the geometric series formula to check that if you sum this prob-
ability over n = 1 to ∞, you get 1.

End of August 23 lecture
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We now return to the definition of a probability measure. We certainly
want it to be additive in the sense that if two events A and B are disjoint,
then

P(A ∪ B) = P(A) + P(B)

Using induction this property implies that if A1, A2, · · ·An are disjoint (Ai ∩
Aj = ∅, i 6= j), then

P(∪n
j=1Aj) =

n
∑

j=1

P(Aj)

It turns out we need more than this to get a good theory. We need a infi-
nite version of the above. If we require that the above holds for any infinite
disjoint union, that is too much and the result is there are reasonable proba-
bility measures that get left out. The correct definition is that this property
holds for countable unions.

We briefly review what countable means. A set is countable is there
is a bijection (one-to-one and onto map) between the set and the natural
numbers. So any sequence is countable and every countable set can be written
as a sequence.

The property we will require for probability measures is the following.
Let An be a sequence of disjoint events, i.e., Ai ∩ Aj = ∅ for i 6= j. Then we
require

P(∪∞

j=1Aj) =
∞

∑

j=1

P(Aj)

Until now we have defined an event to just be a subset of the sample space.
If we allow all subsets of the sample space to be events, we get in trouble.
Consider the uniform probability measure P on [0, 1] So for 0 ≤ a < b ≤ 1,
P([a, b]) = b − a. We would like to extend the definition of P to all subsets
of [0, 1] in such a way that (10) holds. Unfortunately, one can prove that this
cannot be done. The way out of this mess is to only define P on a subcollection
of the subsets of [0, 1]. The subcollection will contain all “reasonable” subsets
of [0, 1], and it is possible to extend the definition of P to the subcollection
in such a way that (10) holds provided all the An are in the subcollection.
The subcollection needs to have some properties. This gets us into the rather
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technical definition of a σ-field. The concept of a σ-field plays an important
role in more advanced probability. It will not play a major role in this course.
In fact, after we make this definition we will not see σ-fields again until near
the end of the course.

Definition 3. Let Ω be a sample space. A collection F of subsets of Ω is a
σ-field if

1. Ω ∈ F

2. A ∈ F⇒Ac ∈ F

3. An ∈ F for n = 1, 2, 3, · · · ⇒
⋃

∞

n=1
An ∈ F

The book calls a σ-field the “event space.” I will not use this terminology.
From now on, when I use the term event I will mean not just a subset of the
sample space but a subset that is in F .

Roughly speaking, a σ-field has the property that if you take a countable
number of events and combine them using a finite number of unions, inter-
sections and complements, then the resulting set will also be in the σ-field.
As an example of this principle we have

Theorem 1. If F is a σ-field and An ∈ F for n = 1, 2, 3, · · ·, then ∩∞

n=1An ∈
F .

Proof. GAP !!!!!!!!!!!!!

We can finally give the mathematical definition of a probability measure.

Definition 4. Let F be a σ-field of events in Ω. A probability measure on
F is a real-valued function P on F with the following properties.

1. P(A) ≥ 0, for A ∈ F .

2. P(Ω) = 1, P(∅) = 0.

3. If An ∈ F is a disjoint sequence of events, i.e., Ai ∩ Aj = ∅ for i 6= j,
then

P(
∞
⋃

n=1

An) =
∞

∑

n=1

P(An) (10)
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1.4 Properties of probability measures

We start with a bit of terminology. If Ω is a set (the probability space), F is
a σ-algebra of subsets in Ω (the events), and P is a probability measure on
F , then we refer to the triple (Ω,F ,P) as a probability space.

The next theorem gives various formulae for computing with probability
measures.

Theorem 2. Let (Ω,F ,P) be a probability space.

1. P(Ac) = 1 − P(A) for A ∈ F .

2. P(A ∪ B) = P(A) + P(B) −P(A ∩ B) for A, B ∈ F .

3. P(A \ B) = P(A) − P(A ∩ B). for A, B ∈ F .

4. If A ⊂ B, then P(A) ≤ P(B). for A, B ∈ F .

5. If A1, A2, · · · , An ∈ F are disjoint, then

P(

n
⋃

j=1

Aj) =

n
∑

j=1

P(Aj) (11)

Proof. Prove some of them. GAP !!!!!!!!!!!!!!!!!!!!!

We have given a mathematical definition of probability measures and
proved some properties about them. We now try to give some intuition
about what the probability measure tells you. To be concrete we consider an
example. We roll two four-sided dice and look at the probability their sum
is less than or equal to 3. It is 3/16. Now suppose we repeat the experiment
a large number of times, say 1, 000. Then we expect that out of these 1, 000
there will be approximately 3000/16 times that we get a sum less than or
equal to 3. Of course we don’t expect to get exactly this many occurrences.
But if we do the experiment N times and look at the number of times we
get a sum less than or equal to 3 divided by N , the number of times we did
the experiment, then this ratio should converge to 3/16 as N goes to infinity.
More generally, if A is some event and we do the experiment N times, the
we should have

lim
N→∞

number of outcomes in A

N
= P(A)
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This statement is not a mathematical theorem at this point, but we will
eventually make it into one. This view of probability is often called the
“frequentist view.”

1.5 Conditional probability

Conditional probability is a very important idea in probability. We start
with the formal mathematical definition and will then explain why this is a
good definition.

Definition 5. If A and B are events and P(B) > 0, then the (conditional)
probability of A given B is denoted P(A|B) and is given by

P(A|B) =
P(A ∩ B)

P(B)
=

intersection

given
(12)

Example: Pick a real random number X uniformly from [0, 10]. If X > 6.5,
what is the probability X > 7.5.

To motivate the definition consider the following example. Suppose we
roll two four-sided dice, but we only “keep” the roll if the sum is less than or
equal to 3. For this “conditional” experiment we ask what is the probability
that we do not get a 2 on either die. We can look at this from a frequentist
viewpoint. Suppose we roll the two dice a large number of times, say N . The
probability of the sum being less than or equal to 3 is 3/16, so we expect to
get approximately 3N/16 that have a sum less than or equal to 3. How many
of them do not have a 2? If the sum is less than or equal to 2 and they do not
have have a 2, then the roll is two 1’s. Note that we are taking the intersection
here. The probability of this intersection event is 1/16. So the number of
rolls that we “count” which also have no 2’s should be approximately N/16.
So the fraction of the rolls that count which has no 2 is approximately

3N

16

N

16

=
3

16

16

=
P(intersection)

P(given)

Theorem 3. Let P be a probability measure, B an event (B ∈ F) with
P(B) > 0. For events A (A ∈ F), define

Q(A) = P(A|B) =
P(A ∩ B)

P(B)

Then Q is a probability measure on (Ω,F).
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Proof. Prove countable additivity. GAP !!!!!!!!!!!!!!!

Trees

H

T

G

G

R

1/2

1/2

O

2/6

4/6

3/5

2/5

2/12

4/12

2/10

3/10

Figure 1: Tree for the example with flipping a coin and then re-
moving some balls from the urn.

Trees are a nice tool in solving problems involving conditional probability.
We can rewrite the definition of conditional probability as

P(A ∩ B) = P(A|B)P(B) (13)

In some experiments the nature of the experiment means that we know cer-
tain conditional probabilities. If we know P(A|B) and P(B), then we can
use the above to compute P(A ∩ B). We illustrate this with an example.

Example: An urn contains 3 red balls, 2 green balls and 4 orange balls.
The balls are identical except for their color. We flip a fair coin. If it is
heads, we remove all the red balls. If it is tails, we remove all the orange
balls. Then we draw one ball from the urn and look at its color. We take an
outcome to be both the result of the coin flip and the color of the ball. So

Ω = {(H, G), (H, O), (H, R), (T, G), (T, O), (T, R)} (14)
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Figure 1 shows the tree to analyze this example. Consider following the
tree from left to right along the topmost branches. This corresponds to
a coin flip of heads, followed by drawing a green ball. The probability of
heads is 1/2. Given that the flip was heads the probability of green is 2/6.
Multiplying these two numbers gives the probability of the outcome (H, G),
i.e, 2/12.

End of August 25 lecture

1.6 Discrete probability measures

If Ω is countable, we will call a probability measure on Ω discrete. In this
setting we can take F to just be all subsets of Ω. If E is an event, then it is
countable and so we can write it as the countable disjoint union of sets with
just one element in each of them. Then by the countable additivity property
of a probability measure, P(E) is given by summing up the probabilities of
each of the outcomes in E. So in this setting P is completely determined by
the numbers P({ω}) were ω is an outcome in Ω. We emphasize that this is
not true for uncountable Ω.

Proposition 1. Let Ω be countable. Write it as Ω = {ω1, ω2, ω3, · · ·}. Let
pn be a sequence of non-negative numbers such that

∞
∑

n=1

pn = 1

Define F to be all subsets of Ω. For an event E ∈ F , define its probability
by

P(E) =
∑

n:ωn∈E

pn

Then P is a probability measure on F .

Proof. The first two properties of a probability measure are obvious. The
countable additivity property comes down to the theorem that says you can
rearrange an absolutely convergent series and not change its value.

We have already seen examples of such probability measures. For follow-
ing give Ω and the pn.

10



• Roll a die.

• Roll a die until we get a 6.

• Flip a coin n times and look at total number of heads.

1.7 Independence

In general P(A|B) 6= P(A). Knowing that B happens changes the probability
that A happens. But sometimes it does not. Using the definition of P(A|B),
if P(A) = P(A|B) then

P(A) =
P(A ∩ B)

P(B)
(15)

i.e., P(A ∩ B) = P(A)P(B). This motivate the following definition.

Definition 6. Two events are independent if

P(A ∩ B) = P(A)P(B) (16)

Caution: Independent and disjoint are two quite different concepts. If
A and B are disjoint, then A∩B = ∅ and so P(A∩B) = 0. So they are also
independent only if P(A) = 0 or P(B) = 0.

Example Roll 2 four-sided dice. Define four events:

A = first roll is a 2

B = second roll is a 3

C = sum is 6 or 8

D = product is odd

(17)

Show that C and D are independent and most of the other pairs are not.
GAP !!!!!!!!!!!!!!!!

Using and abusing the definition: Often we use the idea of indepen-
dent to figure out what the probability measure is. We have already done
this implicitly in some examples. In the “roll a die until we get a 6” example,
we compute things like the probability that it takes 3 rolls by assuming the
roles were independent: 5

6
× 5

6
× 1

6
. But if we are given P , then determining
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if two events are independent is just a matter of computation, not a philo-
sophical question. In the previous example with two dice one might think
that C and D should influence each other and so are not independent. But
the computation shows they are.

Theorem 4. If A and B are independent events, then

1. A and Bc are independent

2. Ac and B are independent

3. Ac and Bc are independent

In general A and Ac are not independent.
The notion of independence can be extended to more than two events.

Definition 7. Let A1, A2, · · · , An be events. They are independent if for all
subsets I of {1, 2, · · · , n} we have

P(∩i∈IAi) =
∏

i∈I

P(Ai) (18)

They are just pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj) for 1 ≤ i <
j ≤ n.

Obviously, independent implies pairwise independent. But it is possible
to have events that are pairwise independent but not independent. One of
the homework problems will give an example of this.

1.8 The partition theorem and Bayes theorem

We start with a definition.

Definition 8. A partition is a finite or countable collection of events Bj such
that Ω = ∪jBj and the Bj are disjoint, i.e., Bi ∩ Bj = ∅ for i 6= j.

Theorem 5. (Partition theorem) Let {Bj} be a partition of Ω. Then for
any event A,

P(A) =
∑

j

P(A|Bj)P(Bi) (19)
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Proof. We start with the set identity

A = A ∩ (∪jBj) = ∪j(A ∩ Bj) (20)

So

P(A) = P(∪j(A ∩ Bj)) =
∑

j

P(A ∩ Bj) (21)

where the last inequality holds since the events A ∩ Bj are disjoint. We
can write P(A ∩ Bj) as P(A|Bj)P(Bj), so we obtain the equation in the
theorem.

The formula in the theorem should be intuitive.
Example A box has 4 red balls. We flip a fair coin until we get a 6. Let
N be the number of flips it takes (so N ≥ 1). We add N green balls to the
box. Then we draw a ball from the box. Find the probability the ball drawn
is red.

GAP !!!!!!!!!!!!!!! Solution

Example We return to the example above with a box containing 4 red balls
to which we add N green balls where N is the number of flips of a fair coin
to get a 6.
(a) Given that N = 3, find the probability the ball drawn is red.
(b) If the ball drawn is red, what is P (N = 3)?

The first question is trivial. The second one is often called a Bayes theo-
rem problem. In this problem it is trivial to find the probability of the ball
being a certain color if we know the value of N . But if we interchange these
events and ask for the probability that N is a certain value given the color of
the ball drawn, that is a more complicated question. We have to use the def-
inition of conditional probability and the partition theorem. You can write
down a complicated theorem/formula (Bayes theorem) that can be used to
do (b), but we won’t. All you really need is the definition of conditional
probability and the partition theorem.

GAP !!!!!!!!!!!!!!! Solution

Often the hardest part of using the partition theorem is figuring out what
partition to use. The following example illustrates this point.

Example: We flip a fair coin n times. When we get k heads in a row,
this is called a run of k heads. We want to find the probability that we do
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not get a run of 3 heads in the n flips. Let un be this probability. We will find
a recursion relation for un as a function of n. Note that u1 = 1 and u2 = 1.
We will look at the first three flips to define our partition. Our partition has
4 events. We denote them by just T,HT,HHT, HHH. T is the event that the
first flip is tails. HT is the event that the first flip is heads and the second
is tails. HHT is the event that the first two flips are heads and the third flip
is T. HHH is ... Let E be the event that there is no run of 3 heads in the n
flips. The partition theorem says

Pn(E) = Pn(E|T )Pn(T ) + Pn(E|HT )Pn(HT )

+ Pn(E|HHT )Pn(HHT ) + Pn(E|HHH)Pn(HHH)

We have added a subscript n to P to indicate that this is the probability
measure for the experiment of flipping the coin n times. Some of these
probabilities are easily evaluated : Pn(T ) = 1/2,Pn(HT ) = 1/4, · · ·, Now
consider Pn(E|T ). Since the first flip is T, the first flip will not be part of a
run of 3 heads. So Pn(E|T ) = Pn−1(E). Similarly, Pn(E|HT ) = Pn−2(E)
and Pn(E|HHT ) = Pn−3(E). Note that Pn(E|HHH) = 1. Letting pn

denote Pn(E) we get a recursion relation:

pn =
1

2
pn−1 +

1

4
pn−2 +

1

8
pn−3 +

1

8

The first few pn are easily seen to be p1 = p2 = 0, p3 = 1/8.
Example - the Monty Hall problem There are three doors. Behind one
is a new car. Behind the other two are goats. You get to pick a door. The
host (Monty Hall) knows where the car is. After you have picked, he opens
a door that has a goat behind it. You are give the option of sticking with
your original choice or switching to the other unopened door. What is you
best strategy? Here are three strategies:

1. Stick with your original choice.

2. Always switch

3. Flip a coin. If it is heads then switch. It tails, stick.

Compute the probability of winning a car for each strategy.

End of August 30 lecture

GAP !!!!!!!!!!!!!!! Solution
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1.9 Continuity of P

A sequence of events An is said to be increasing if A1 ⊂ A2 ⊂ A3 · · ·An ⊂
An+1 · · ·. In this case we can think of ∪∞

n=1An as the “limit” of An.
Similarly, An is said to be decreasing if A1 ⊃ A2 ⊃ A3 · · ·An ⊃ An+1 · · ·.

In this case we can think of ∩∞

n=1An as the “limit” of An.
The following theorem says that probability measures are continuous in

some sense.

Theorem 6. Let (Ω,F ,P) be a probability space. Let An be an increasing
sequence of events. Then

P(∪∞

n=1An) = lim
n→∞

P(An) (22)

If An is a decreasing sequence of events, then

P(∩∞

n=1An) = lim
n→∞

P(An) (23)

Example Roll a die forever. What is Ω ? Let An be the event that there
is no 1 in the first n rolls. Then An is a decreasing sequence of events. We
have P(An) =

(

5

6

)n
. So limn→∞ P(An) = 0. So the theorem says

P(∩∞

n=1An) = 0 (24)

The event ∩∞

n=1An is the event that for every n there is no 1 in the first n
rolls. So it is the event that we never get a 1. The probability this happens
is 0, i.e., the probability we eventually get a 1 is 1.
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