
2 Discrete Random Variables

Big picture: We have a probability space (Ω,F ,P). Let X be a real-valued
function on Ω. Each time we do the experiment we get some outcome ω. We
can then evaluate the function on this outcome to get a real number X(ω).
So X(ω) is a random real number. It is called a random variable, or just RV.
We can define events in terms of X, e.g., X ≥ 4, X = 2, ... We would like
to compute the probability of such events.

Example: Roll a dice 10 times. We take Ω to be all 10-tuples whose
entries are 1, 2, 3, 4, 5 or 6. Let X = sum of the 10 rolls, Y = the number of
rolls with a 3. These are two random variables.

In this course RV’s will come in two flavors - discrete and continuous. For
purposes of this course, a RV is discrete if its range is finite or countable,
and is continuous otherwise.

Very important idea: The sample space Ω may be quite large and
complicated. But we may only be interested in one or a few RV’s. We would
like to be able to extract all the information in the probability space (Ω,F ,P)
that is relevant to our random variable(s), and forget about the rest of the
information contained in the probability space.

2.1 Probability mass function

Definition 1. A discrete random variable X on a probability space (Ω,F ,P)
is a function X → R such that the range of X is finite or countable and for
x ∈ R, {ω ∈ Ω : X(ω) = x} ∈ F . The probability mass function (pmf) f(x)
of X is the function on R given by

f(x) = P(X = x) = P({ω ∈ Ω : X(ω) = x})

Notation/terminology: If we have more than one RV, then we have
more than one pmf. To distinguish them we use fX(x) for the pmf for X,
fY (x) for the pmf for Y , etc. Sometimes the pmf is called the “density func-
tion” and sometimes the “distribution of X.” The latter is really confusing
as the term “distribution function” refers to something else.

Example: Roll two four sided dice. Let X be their sum. It is convenient
to give the pmf of X in a table.
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x 2 3 4 5 6 7 8
fX(x) 1/16 2/16 3/16 4/16 3/16 2/16 1/16

The next theorem says that the probabilty mass function realizes our goal
of capturing all the information in the probability space that is relevant to X.
The theorem says that we can compute the probability of an event defined
just in terms of X from just the pmf of X. We don’t need P.

Theorem 1. Let X be a discrete RV. Let A ⊂ R. (Note that A is not an
event, but X ∈ A is.) Then

P(X ∈ A) =
∑

x∈A

f(x)

The sum above merits some comment. We might as well just sum over
the values x which are in A and in the range of X since if they are not in
the range, then f(x) = 0. So the sum of the nonzero terms in the above is
countable or finite.

Proof. The proof of the theorem is trivial. First note that if we replace A by
its intersection with the range of X, then the event X ∈ A does not change
and the sum in the theorem does not change since fX(x) = 0 when x is not
in the range of X. So we might as well assume that A is a subset of the range
of X. In particular this means A is finite or countable. We can write the
event X ∈ A as the disjoint union over x ∈ A of the events X = x. These
events are disjoint, so by the countable additivity property

P(X ∈ A) = P(∪x∈A{X = x}) =
∑

x∈A

P(X = x) =
∑

x∈A

f(x)

Another very important idea: Suppose we have two completely dif-
ferent probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), and RV’s X1 on the
first and X2 on the second. Then it is possible that X1 and X2 have the same
range and identical pmf’s, i.e., fX1

(x) = fX2
(x) for all x. If we only look at

X1 and X2 when we do the two experiments, then we won’t be able to tell
the experiments apart.
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Definition 2. Let X1 and X2 be random variables which are not necessarily
defined on the same probability space. If fX1

(x) = fX2
(x) for all x, then we

say X1 and X2 are identically distributed.

If you are a mathematician, a natural question is what functions can be
pmf’s? The following theorem gives an answer

Theorem 2. Let x1, x2, x3, · · · be a finite or countable set of real numbers.
Let p1, p2, p3, · · · be positive numbers with

∑

n pn = 1. Then there exists a
probability space (Ω,F ,P) and an random variable X on Ω such that the
range of X is {x1, x2, · · ·} and the pmf of X is given by fX(xi) = pi.

2.2 Discrete RV’s - catalog

Since different experiments and random variables can give rise to the same
probability mass functions, it is possible that certain pmf’s come up a lot in
applications. This is indeed the case, so we begin to catalog them.

Bernoulli RV (one parameter p ∈ [0, 1]) This is about as simple as they
get. The RV X only takes on the values 0 and 1.

p = P(X = 1), 1− p = P(X = 0)

We can think of this as coming from a coin with probability p of heads. We
flip it only once, and X = 1 corresponds to heads, X = 0 to tails.

Binomial RV (two parameters: p ∈ [0, 1], positive integer n) The range of
the random variable X is 0, 1, 2, · · · , n.

P(X = k) =

(

n

k

)

pk(1− p)n−k

Think of flipping an unfair coin n times. p is the probability of heads on
a single flip and X is the number of head we get out of the n flips. The
parameter n is often called the “number of trials.”

We review some stuff. The notation
(

n

k

)

is read “n choose k”. It is defined
by

(

n

k

)

=
n!

k!(n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
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It gives the number of ways of picking a subset of k objects out of a set of
n distinguishable objects. (Note that by saying a “subset” of k objects, we
mean that we don’t care about the ordering of the k objects.) The binomial
theorem is the algebraic identity

(x+ y)n =
n

∑

k=0

(

n

k

)

xk yn−k

We derive the formula for P(X = k) as follows. An outcome that con-
tributes to the eventX = k must have k heads and n−k tails. The probability
of any one such sequence of flips is pk(1− p)n−k. We need to figure out how
many such sequences there are. The is the same as the following counting
problem. We have k H’s and n − k T’s and we have to arrange them in a
line. There are

(

n

k

)

ways to choose the positions for the H’s and then the T’s
have no freedom - they go into the remaining empty slots.

Poisson RV (one parameter: λ > 0) The range of the random variable X
is 0, 1, 2, · · ·.

P(X = k) =
λke−λ

k!

Note that

∞
∑

k=0

λk

k!
= eλ

which implies that the sum of the P(X = k) is 1 as it should be. There
is no simple experiment that produces a Poisson random variable. But it
is a limiting case of the binomial distribution and it occurs frequently in
applications.

Geometric (one parameter: p ∈ [0, 1]) The range of the random variable X
is 1, 2, · · ·.

P(X = k) = p(1− p)k−1

Check that the sum of these probabilities is 1. Think of flipping an unfair
coin with p being the probability of heads until we gets heads for the first
time. Then X is the number of flips (including the flip that gave heads.)
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Caution: Some books use a different convention and take X to be the
number of tails we get before the first heads. In that case X = 0, 1, 2, ... and
the pmf is different.

Negative binomial (two parameters: p ∈ [0, 1] and a positive integer n)
The range of the random variable X is n, n+ 1, n+ 2, n+ 3, · · ·.

P(X = k) =

(

k − 1

n− 1

)

pn(1− p)k−n

Think of an unfair coin with probability p of heads. We flip it until we get
heads a total of n times. Then we take X to be the total number of flips
including the n heads. So X is at least n.

We derive the formula as follows. If X = k then there are a total of k
flips. Out of them, exactly n are heads. One of these heads must occur on the
last (kth) flip. For a particular such sequence the probability is pn(1−p)k−n.
We need to count how many such sequences there are. The kth flip must be
heads. The first k− 1 flips contain n− 1 heads and k− n tails. They can be
in any arrangment. So there are

(

k−1
n−1

)

such sequences of them.

xxxxxxxxxxxxxxxxxx

2.3 Functions of discrete RV’s

Recall that if X is a RV, then it is a function from the sample space Ω to the
real numbers R. Now let g(x) be a function from R to R. Then Y = g(X)
is a new random variable. Note that what we are doing is composing two
functions. The notation hides the arguments of the functions. We have
Y (ω) = g(X(ω)). What is the probability mass function of Y ? As we will
see, this is a relatively simple computation. When we come to continuous
random variables it will be more involved.

Proposition 1. Let X be a random variable, g a function from R to R.
Define a new random varialbe by Y = g(X). Then the pmf function of Y is
given by

fY (y) =
∑

x:g(x)=y

fX(x) =
∑

x∈g−1(y)

fX(x)
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Proof. By definition fY (y) is P(Y = y). The event is the disjoint union of
the events X = x where x ranges over x such that g(x) = y. More verbosely,

{ω : Y (ω) = y} =
⋃

x:g(x)=y

{ω : X(ω) = x}

The formula in the proposition follows.

Example Roll a four-sided die twice. LetX be the first roll minus the second
roll. Let Y = X2. Find the pmf of X and use it to find the pmf of Y .

2.4 Expected value

We start with a really simple example. Suppose that a RV X only takes
on the three values 1, 2, 3 and the pmf is given in the table. We do the

x 1 2 3
fX(x) 0.2 0.5 0.3

experiment a million times and record the one million values of X that we
get. Then we average these million numbers. What do we get? In our list
of one million values of X, we will get approximately 200, 000 that are 1,
approximately 500, 000 that are 2, and approximately 300, 000 that are 3. So
the average will be approximately

0.2× 106 × 1 + 0.5× 106 × 2 + 0.3× 106 × 3

106
= 0.2× 1 + 0.5× 2 + 0.3× 3

More generally, if we have a discrete RV X and we repreat the experiment
N times, we will get X = x approximately fX(x)N times. So the average
will be

∑

x x fX(x)N

N
=

∑

x

x fX(x)

So we make the following definition.

Definition 3. Let X be a discrete RV with probability mass function fX(x).
The expected value of X, denoted E[X] is

E[X] =
∑

x

xfX(x)
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provided that
∑

x

|x|fX(x) < ∞

Terminology/notation The expected value is also called the mean of
X. Sometimes E[X] is just written EX. When the above does not converge
absolutely, we say the mean is not defined.

Example: Roll a six-sided die and let X be the number you get. Compute
EX. Compute E[X2].

Next we compute the means of the random variables in our catalog.

Bernoulli

E[X] = 0× (1− p) + 1× p = p

Poisson

E[X] =
∞
∑

n=0

n
λn

n!
e−λ =

∞
∑

n=1

λn

(n− 1)!
e−λ = e−λλ

∞
∑

n=1

λn−1

(n− 1)!

= e−λλ
∞
∑

n=0

λn

n!
= e−λλeλ = λ

Geometric One of the homework problems will be to compute the mean of
the geometric distribution. You should find E[X] = 1/p.

Binomial We will show that E[X] = np. We have

E[X] =
n

∑

k=0

k

(

n

k

)

pk(1− p)n−k =
n

∑

k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=
n

∑

k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

= np
n

∑

k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

= np
n

∑

k=1

(

n− 1

k − 1

)

pk−1(1− p)n−k

= np

n−1
∑

k=0

(

n− 1

k

)

pk(1− p)n−1−k = np
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The last sum is 1 since this is just the normalization condition for the bino-
mial RV with n− 1 trials.

Suppose X is a RV and g : R → R. As before we define a new random
variable by Y = g(X). Suppose we know the probability mass function of X
and we want to compute the mean of Y . The long way to do this is to first
work out the probability mass function of Y and then compute the mean of
Y . However, there is a shortcut.

Theorem 3. (Law of the unconscious statistician) Let X be a discrete RV,
g a function from R to R. Define a new RV by Y = g(X). Let fX(x) be the
pmf of X. Then

E[Y ] = E[g(X)] =
∑

x

g(x)fX(x)

Proof. We start with the definition of EY :

EY =
∑

y

y fY (y)

By a previous theorem we can write the pmf for Y in terms of the pmf for
X:

∑

y

y fY (y) =
∑

y

y
∑

x:g(x)=y

fX(x) =
∑

y

∑

x:g(x)=y

g(x) fX(x)

Every x in the range of X appears in the right side exactly once. So this can
be written as

∑

x

g(x) fX(x)

Example We continue a previous example. Roll a four-sided die twice. Let
X be the first roll minus the second roll. Let Y = X2. Find E[Y ].

Definition 4. The variance of X is

var(X) = E[(X − µ)2]

where µ = EX. The standard deviation of X is
√

var(X). The variance
is often denoted σ2 and the standard deviation by σ. The mean of X, i.e.,
E[X] is also called the first moment of X. The kth moment of X is E[Xk].
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Here are the variances of the RV’s in our catalog:

Binomial: σ2 = np(1− p)

Geometric: σ2 = 1−p

p2

Poisson: σ2 = λ

Negative binomial: σ2 = n1−p

p2

The expected value has a lot of useful properties.

Theorem 4. Let X be a discrete RV with finite mean. Let a, b ∈ R.

1. E[aX + b] = aE[X] + b

2. If P(X = b) = 1, then E[X] = b.

3. If P(a ≤ X ≤ b) = 1, then a ≤ E[X] ≤ b.

4. If g(X) and h(X) have finite mean, then E[g(X)+h(X)] = E[g(X)]+
E[h(X)]

Proof. GAP !!!!!!!!!!!!!!!!!!!!!!!!!!

Remarks:

1. The above properties will also hold for the expected value of continuous
random variables.

2. The expected value is a linear operation: E[aX+bY ] = aE[X]+bE[Y ]
for real numbers a, b and random variables X, Y .

Proposition 2. If X has finite first and second moments, then

var(X) = E[X2]− (E[X])2

and

var(cX) = c2var(X), c ∈ R

Proof. GAP !!!!!!!!!!!!!!!!!!!!!!!!!!

xxxxxxxxxxxxxxxxxx

Example: A random variable X has mean 2 and variance 4. Let Y =
3X − 2. Find the mean and variance of X.

Remark: The variance of X and X + c are the same.
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2.5 Conditional expectation

Recall the definition of conditional probability. The probability of A given
that B happens is

P(A|B) =
P(A ∩ B)

P(B)

Fix an event B. If we define a function Q on events by Q(A) = P(A|B), then
we showed before that this defines a new probability measure. So if we have
a RV X, then we can consider its probability mass function with respect to
the probability measure Q. And so we can compute its expected value with
repect to this new pmf. This is called the conditional expectation of X given
B. The formal definition follows.

Definition 5. Let X be a discrete RV. Let B be an event with P(B) > 0.
The conditional probability mass function of X given B is

f(x|B) = P(X = x|B)

The conditional expectation of X given B is

E[X|B] =
∑

x

x f(x|B)

(provided
∑

x |x| f(x|B) < ∞).

Example: Roll a four-sided die. Look at the number we get and flip a fair
coin that many times. What is the expected value of the number of heads?

Example: Roll a six-sided die. Let X be the number on the die. Find E[X]
and E[X|X is odd].

Recall that the partition theorem gave a formula for the probability of
an event A in terms of conditional probabilities of A given the events in a
partition. There is a similar partition theorem for the expected value of a RV.
It is useful when it is hard to compute the expected value of X directly, but it
is relatively easy if we know something about the outcome of the experiment.

Theorem 5. Let B1, B2, B3, · · · be a finite or countable partition of Ω. (So
∪kBk = Ω and Bk ∩ Bl = ∅ for k 6= l.) We assume also that P(Bk) > 0 for
all k. Let X be a discrete random variable. Then

E[X] =
∑

k

E[X|Bk]P(Bk)

provided that all the expected values are defined.
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Remark Note that if B is an event with 0 < P(B) < 1, then the theorem
applies to the partition with two events : B and Bc. So we have

E[X] = E[X|B]P(B) + E[X|Bc]P(Bc)

Example: Roll a die until we get a 6. Let X be the number of 1’s we got
before the 6 came up. Find E[X]. If we know how many rolls it took to get
the 6, then this is a pretty easy expected value to compute. So we define
our partition by looking at the number of rolls. Let N be the number of
rolls (including the final 6). Note that N has a geometric distribution with
p = 1/6. Consider E[X|N = n]. This amount to computing the expected
value of X in a modified experiment. In the modified experiment it takes
exactly n rolls to get the first 6. So the first n− 1 rolls can be 1, 2, 3, 4 or 5,
and the nth roll is a 6. The pmf for X given N = n is a binomial distribution
with n− 1 trials and p = 1/5. So E[X|N = n] = (n− 1)/5. Thus using the
partition theorem

E[X] =
∞
∑

n=1

E[X|N = n]P(N = n) =
∞
∑

n=1

n− 1

5
P(N = n)

We know that

P(N = n) =

(

5

6

)n−1
1

6

We could plug this into the above and try to compute the series. Instead we
do something a bit more clever.

∞
∑

n=1

n− 1

5
P(N = n) =

1

5

∞
∑

n=1

nP(N = n)−
1

5

∞
∑

n=1

P(N = n)

=
1

5
E[N ]−

1

5
=

1

5
(6− 1) = 1

Proof. Prove the partition theorem. GAP !!!!!!!!!!!!!!!!!!!!!!!!!!

The following example is done in the language of gambling and is typically
referred to as the “gambler’s ruin” problem. But it comes up in a variety of
settings and is an important example.
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Example (Gambler’s ruin): There is a game with two players A and B.
Each time they play, the probability that A wins is p, the probability B wins
is 1−p. The player that loses pays the winner 1$. At the start, player A has
a dollars and player B has b dollars. They play until one player is broke. (No
ATM.) The first question we study is what is the probability that A wins the
game overall, i.e., B goes broke. Note that the total amount of money in the
game is always a+ b. We will let n = a+ b.

Let A denote the event that player A wins the overall game and let A1

be the event that player A wins the first game. By the partition theorem,

P(A) = P(A|A1)P(A1) +P(A|Ac
1)P(Ac

1) = pP(A|A1) + (1− p)P(A|Ac
1)

Look at P(A|A1). We know that A won the first game. After this first game,
A has a+1 dollars and B has b−1 dollars. So P(A|A1) is just the probablity
A whens when A starts with a + 1 dollars and B starts with b − 1 dollars.
So we consider a bunch of experiments, indexed by k = 0, 1, 2, · · · , a + b. In
experiment k, player A starts with k dollars and player B starts with n− k
dollars. Each experiment has a different probability measure and so we Pk

to denote the probability measure for experiment k. Our original probability
measure P is Pa. So (1) says

Pa(A) = pPa(A|A1) + (1− p)Pa(A|A
c
1)

We have seen that Pa(A|A1) = Pa+1(A). Likewise Pa(A|A
c
1) = Pa−1(A). So

we have a recursion relation:

Pa(A) = pPa+1(A) + (1− p)Pa−1(A)

Letting pa stand for Pa(A), the probability A wins the overall game, we have
to solve the system of linear equations

pa = ppa+1 + (1− p)pa−1

Note that p0 = 0 and pn = 1. One trivial solution of these equations is to take
pa = c for some constant c. This does not satisy the boundary conditions.

We rewrite our equation as

0 = p(pa+1 − pa)− (1− p)(pa − pa−1) (1)

and think of it as a system of equations for the differences pa+1 − pa. In
the special case of p = 1/2, a solution is given by taking the differences to
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be constant : pa+1 − pa = d. Since p0 = 0 this gives pa = da. To satisfy
pn = 1 we have to take d = 1/n. So we find pa = a/n. When p 6= 1/2 we
look for a solution of the form pa − pa−1 = λa. (This is similar to looking
for a solution to a constant coef differential equation that is an exponential
function.) Plugging this into (1) we get

0 = pλa+1 − (1− p)λa

So we need λ = (1− p)/p. So

pa − pa−1 = c

(

1− p

p

)a

solves the linear equations. We have pa = 0 and we will need to choose c to
make pn = 1. Summing the above,

pa =
a

∑

k=1

(pk − pk−1) = c
a

∑

k=1

(

1− p

p

)k

= c
1− p

p

1−
(

1−p

p

)a

1− 1−p

p

Choosing c to make pn = 1 we get

pa =
1−

(

1−p

p

)a

1−
(

1−p

p

)n

Now we want to find the expected number of games they play.
Let X be the number of games they play. Let A1 be the event that player

A wins the first game. By the partition theorem,

E[X] = E[X|A1]P(A1) + E[X|Ac
1]P(Ac

1)

Look at E[X|A1]. We know that A won the first game. After this first
game, A has a + 1 dollars and B has b − 1 dollars. So E[X|A1] is 1 plus
the expected number of games when A starts with a + 1 dollars and B
starts with b − 1 dollars. So we consider a bunch of experiments, indexed
by k = 0, 1, 2, · · · , a + b. In experiment k, player A starts with k dollars
and player B starts with a + b− k dollars. Each experiment has a different
probability measure and so random variables have different expected values
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in the different experiments. So we use Ek[X] to denote the expected value
of X in the kth experiment. Then we have

Ek[X|A1] = 1 + Ek+1[X]

Similarly,

Ek[X|Ac
1] = 1 + Ek−1[X]

So (2) becomes

Ek[X] = (1 + Ek+1[X]) p+ (1 + Ek−1[X])(1− p)

We let mk = Ek[X]. Then we have

mk = 1 + pmk+1 + (1− p)mk−1

This equation is true for 0 < k < a + b. Note that m0 = 0 since this is the
experiment where A starts off broke, ma+b = 0 since this is the experiment
where B starts off broke.

We now have a big system of linear equations in the unknowns mk, k =
0, 1, · · · , a+ b. Rewrite the equations as

1 = (1− p)(mk −mk−1)− p(mk+1 −mk)

Our strategy will use ideas from solving linear differential equations. The
above is an inhomogeneous difference equation. The corresponding homoge-
neous difference equation is

0 = (1− p)(mk −mk−1)− p(mk+1 −mk) (2)

If we can find one particular solution of the inhomogeneous equation and
the general solution of the homogeneous equation, then we get the general
solution of the inhomogeneous equation by adding them together.

We guess a solution of the inhomogeneous equation. Try mk −mk−1 = c.
This works if 1 = (1− p)c− pc, and so c = 1/(1− 2p).

For the homogeneous equation we look for a solution of the form

mk −mk−1 = ck
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(This is similar to looking for a solution to a constant coef differential equa-
tion that is an exponential function.) Plus this into (2) and you find it works
if c = (1− p)/p. So the general solution to the original problem is given by

mk −mk−1 =
1

1− 2p
+ α

(

1− p

p

)k

where α is arbitray so far. We have m0 = 0, so

mk =
k

∑

j=1

(mj −mj−1) =
k

∑

j=1

[

1

1− 2p
+ α

(

1− p

p

)k
]

We use the algebraic formula

n
∑

j=0

rj =
1− rn+1

1− r

to sum the series. After some algebra we get

mk =
k

1− 2p
+ α

1− p

2p− 1
[1−

(

1− p

p

)k

]

The value of α is determined by the “boundary condition” ma+b = 0. Some
algebra then gives

mk =
k

1− 2p
+

a+ b

2p− 1

1−
(

1−p

p

)k

1−
(

1−p

p

)a+b

xxxxxxxxxxxxxxxxxx
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