
6 Jointly continuous random variables

Again, we deviate from the order in the book for this chapter, so the subsec-
tions in this chapter do not correspond to those in the text.

6.1 Joint density functions

Recall that X is continuous if there is a function f(x) (the density) such that

P(X ≤ t) =

∫ t

−∞

fX(x) dx

We generalize this to two random variables.

Definition 1. Two random variables X and Y are jointly continuous if there
is a function fX,Y (x, y) on R

2, called the joint probability density function,
such that

P(X ≤ s, Y ≤ t) =

∫ ∫

x≤s,y≤t

fX,Y (x, y) dxdy

The integral is over {(x, y) : x ≤ s, y ≤ t}. We can also write the integral as

P(X ≤ s, Y ≤ t) =

∫ s

−∞

(
∫ t

−∞

fX,Y (x, y) dy

)

dx

=

∫ t

−∞

(
∫ s

−∞

fX,Y (x, y) dx

)

dy

In order for a function f(x, y) to be a joint density it must satisfy

f(x, y) ≥ 0
∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy = 1

Just as with one random variable, the joint density function contains all
the information about the underlying probability measure if we only look at
the random variablesX and Y . In particular, we can compute the probability
of any event defined in terms of X and Y just using f(x, y).

Here are some events defined in terms of X and Y :
{X ≤ Y }, {X2+Y 2 ≤ 1}, and {1 ≤ X ≤ 4, Y ≥ 0}. They can all be written
in the form {(X, Y ) ∈ A} for some subset A of R2.
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Proposition 1. For A ⊂ R
2,

P((X, Y ) ∈ A) =

∫ ∫

A

f(x, y) dxdy

The two-dimensional integral is over the subset A of R2. Typically, when
we want to actually compute this integral we have to write it as an iterated
integral. It is a good idea to draw a picture of A to help do this.

A rigorous proof of this theorem is beyond the scope of this course. In
particular we should note that there are issues involving σ-fields and con-
straints on A. Nonetheless, it is worth looking at how the proof might start
to get some practice manipulating integrals of joint densities.

If A = (−∞, s] × (−∞, t], then the equation is the definition of jointly
continuous. Now suppose A = (−∞, s] × (a, b]. The we can write it as
A = [(−∞, s]× (−∞, b]] \ [(−∞, s]× (−∞, a]] So we can write the event

{(X, Y ) ∈ A} = {(X, Y ) ∈ (−∞, s]× (−∞, b]} \ {(X, Y ) ∈ (−∞, s]× (−∞, a]}

MORE !!!!!!!!!

Definition: Let A ⊂ R
2. We say X and Y are uniformly distributed on A

if

f(x) =

{

1
c
, if (x, y) ∈ A

0, otherwise

where c is the area of A.

Example: Let X, Y be uniform on [0, 1]× [0, 2]. Find P(X + Y ≤ 1).

Example: Let X, Y have density

f(x, y) =
1

2π
exp(−

1

2
(x2 + y2))

Compute P(X ≤ Y ) and P(X2 + Y 2 ≤ 1).

Example: Now suppose X, Y have density

f(x, y) =

{

e−x−y if x, y ≥ 0
0, otherwise
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Compute P(X + Y ≤ t).
What does the pdf mean? In the case of a single discrete RV, the pmf

has a very concrete meaning. f(x) is the probability that X = x. If X is a
single continuous random variable, then

P(x ≤ X ≤ x+ δ) =

∫ x+δ

x

f(u) du ≈ δf(x)

If X, Y are jointly continuous, than

P(x ≤ X ≤ x+ δ, y ≤ Y ≤ y + δ) ≈ δ2f(x, y)

6.2 Independence and marginal distributions

Suppose we know the joint density fX,Y (x, y) of X and Y . How do we find
their individual densities fX(x), fY (y). These are called marginal densities.
The cdf of X is

FX(x) = P(X ≤ x) = P(−∞ < X ≤ x,−∞ < Y < ∞)

=

∫ x

−∞

[
∫ ∞

−∞

fX,Y (u, y) dy

]

du

Differentiate this with respect to x and we get

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy

In words, we get the marginal density of X by integrating y from −∞ to ∞
in the joint density.

Proposition 2. If X and Y are jointly continuous with joint density fX,Y (x, y),
then the marginal densities are given by

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy

fY (y) =

∫ ∞

−∞

fX,Y (x, y) dx

We will define independence of two contiunous random variables differ-
ently than the book. The two definitions are equivalent.
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Definition 2. Let X, Y be jointly continuous random variables with joint
density fX,Y (x, y) and marginal densities fX(x), fY (y). We say they are
independent if

fX,Y (x, y) = fX(x)fY (y)

If we know the joint density of X and Y , then we can use the definition
to see if they are independent. But the definition is often used in a different
way. If we know the marginal densities of X and Y and we know that they
are independent, then we can use the definition to find their joint density.

Example: If X and Y are independent random variables and each has the
standard normal distribution, what is their joint density?

f(x, y) =
1

2π
exp(−

1

2
(x2 + y2))

Example: Suppose that X and Y have a joint density that is uniform on
the disc centered at the origin with radius 1. Are they independent?

Example: If X and Y have a joint density that is uniform on the square
[a, b]× [c, d], then they are independent.

Example: Suppose that X and Y have joint density

f(x, y) =

{

e−x−y if x, y ≥ 0
0, otherwise

Are X and Y independent?

Example: Suppose that X and Y are independent. X is uniform on [0, 1]
and Y has the Cauchy density.
(a) Find their joint density.
(b) Compute P(0 ≤ X ≤ 1/2, 0 ≤ Y ≤ 1)
(c) Compute P(Y ≥ X).

6.3 Expected value

If X and Y are jointly continuously random variables, then the mean of X
is still defined by

E[X] =

∫ ∞

−∞

x fX(x) dx
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If we write the marginal fX(x) in terms of the joint density, then this becomes

E[X] =

∫ ∞

−∞

∫ ∞

−∞

x fX,Y (x, y) dxdy

Now suppose we have a function g(x, y) from R
2 to R. Then we can define

a new random variable by Z = g(X, Y ). In a later section we will see how to
compute the density of Z from the joint density of X and Y . We could then
compute the mean of Z using the density of Z. Just as in the discrete case
there is a shortcut.

Theorem 1. Let X, Y be jointly continuous random variables with joint
density f(x, y). Let g(x, y) : R2 → R. Define a new random variable by
Z = g(X, Y ). Then

E[Z] =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) f(x, y) dxdy

provided
∫ ∞

−∞

∫ ∞

−∞

|g(x, y)| f(x, y) dxdy < ∞

An important special case is the following

Corollary 1. If X and Y are jointly continuous random variables and a, b
are real numbers, then

E[aX + bY ] = aE[X] + bE[Y ]

Example: X and Y have joint density

f(x, y) =

{

x+ y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, otherwise

Let Z = X + Y . Find the mean and variance of Z.

We now consider independence and expectation.

Theorem 2. If X and Y are independent and jointly continuous, then

E[XY ] = E[X]E[Y ]
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Proof. Since they are independent, fX,Y (x, y) = fX(x)fY (y). So

E[XY ] =

∫ ∫

xy fX(x) fY (y) dxdy

=

[
∫

x fX(x) dx

] [
∫

y fY (y) dy

]

= E[X]E[Y ]

6.4 Function of two random variables

Suppose X and Y are jointly continuous random variables. Let g(x, y) be a
function from R

2 to R. We define a new random variable by Z = g(X, Y ).
Recall that we have already seen how to compute the expected value of Z. In
this section we will see how to compute the density of Z. The general strategy
is the same as when we considered functions of one random variable: we first
compute the cumulative distribution function.

Example: Let X and Y be independent random variables, each of which is
uniformly distributed on [0, 1]. Let Z = XY . First note that the range of Z
is [0, 1].

FZ(z) = P(Z ≤ z) =

∫ ∫

A

1 dxdy

Where A is the region

A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, xy ≤ z}

PICTURE

FZ(z) = z +

∫ 1

z

[

∫ z/x

0

1 dy

]

dx

= z +

∫ 1

z

[

∫ z/x

0

1 dy

]

dx

= z +

∫ 1

z

z

x
dx

= z + z ln x|1z = z − z ln z
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This is the cdf of Z. So we differentiate to get the density.

d

dz
FZ(z) =

d

dz
z − z ln z = 1− ln z − z

1

z
= − ln z

fZ(z) =

{

− ln z, if 0 ≤ z ≤ 1
0, otherwise

Example: Let X and Y be independent random variables, each of which is
exponential with parameter λ. Let Z = X + Y . Find the density of Z.

Should get gamma with same λ and w = 2.
This is special case of a much more general result. The sum of gamma(λ,w1)

and gamma(λ,w2) is gamma(λ,w1 + w2). We could try to show this as we
did the previous example. But it is much easier to use moment generating
functions which we will introduce in the next section.

Example: Let (X, Y ) be uniformly distributed on the triangle with vertices
at (0, 0), (1, 0), (0, 1). Let Z = X + Y . Find the pdf of Z.

One of the most important examples of a function of two random variables
is Z = X + Y . In this case

FZ(z) = P(Z ≤ z) = P(X + Y ≤ z)

=

∫ ∞

−∞

[
∫ z−x

−∞

f(x, y) dy

]

dx

To get the density of Z we need to differentiate this with respect to Z. The
only z dependence is in the upper limit of the inside integral.

fZ(z) =
d

dz
FZ(z) =

∫ ∞

−∞

[

d

dz

∫ z−x

−∞

f(x, y) dy

]

dx

=

∫ ∞

−∞

f(x, z − x)dx

If X and Y are independent, then this becomes

fZ(z) =

∫ ∞

−∞

fX(x)fY (z − x)dx
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This is known as a convolution. We can use this formula to find the density of
the sum of two independent random variables. But in some cases it is easier
to do this using generating functions which we study in the next section.

Example: Let X and Y be independent random variables each of which has
the standard normal distribution. Find the density of Z = X + Y .

We need to compute the convolution

fZ(z) =
1

2π

∫ ∞

−∞

exp(−
1

2
x2 −

1

2
(z − x)2) dx

=
1

2π

∫ ∞

−∞

exp(−x2 −
1

2
z2 + xz) dx

=
1

2π

∫ ∞

−∞

exp(−(x− z/2)2 −
1

4
z2) dx

= e−z2/4 1

2π

∫ ∞

−∞

exp(−(x− z/2)2) dx

Now the substitution u = x− z/2 shows

∫ ∞

−∞

exp(−(x− z/2)2) dx =

∫ ∞

−∞

exp(−u2) du

This is a constant - it does not depend on z. So fZ(z) = ce−z2/4. Another
simple substitution allows one to evaluate the constant, but there is no need.
We can already see that Z has a normal distribution with mean zero and
variance 2. The constant is whatever is needed to normalize the distribution.

6.5 Moment generating functions

This will be very similar to what we did in the discrete case.

Definition 3. For a continuous random variable X, the moment generating
function (mgf) of X is

MX(t) = E[etX ] =

∫ ∞

−∞

etx fX(x) dx
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Example: Compute it for exponential. Should find M(t) = λ
λ−t

.
Example: Compute it for the gamma distribution and find

M(t) =

(

λ

λ− t

)w

Proposition 3. (1) Let X be a continuous random variable with mgf MX(t).
Then

E[Xk] =
dk

dtk
MX(t)|t=0

(2) If X and Y are independent continuous random variables then

MX+Y (t) = MX(t)MY (t)

(3) If the mgf of X is MX(t) and we let Y = aX + b, then

MY (t) = etbMX(at)

Proof. For (1)

dk

dtk
MX(t)|t=0 =

dk

dtk

∫ ∞

−∞

fX(x) e
tx|t=0 dx

=

∫ ∞

−∞

fX(x)
dk

dtk
etx|t=0 dx

=

∫ ∞

−∞

fX(x) x
k etx|t=0 dx

=

∫ ∞

−∞

fX(x) x
k dx = E[Xk]

If X and Y are independent, then

MX+Y (t) = E[exp(t(X + Y ))] = E[exp(tX) exp(tY )]

= E[exp(tX)]E[exp(tY )] = MX(t)MY (t)

This calculation assumes that since X and Y are independent, then exp(tX)
and exp(tY ) are independent random variables. We have not shown this.

Part (3) is just

MY (t) = E[etY ] = E[et(aX+b)] = etbE[etaX ] = etbMX(at)
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As an application of part (3) we have

Example: Let X have the exponential distribution with parameter λ. Let
Y = X/λ. Use mgf’s to show Y has the exponential distribution with pa-
rameter 1.
Example: In the homework you show that the mgf for the normal density
is

MX(t) = exp(µt)MZ(σt) = exp(µt+
1

2
σ2t2)

Proposition 4. (a) If X1, X2, · · · , Xn are independent and each is normal
with mean µi and variance σ2

i , then Y = X1 +X2 + · · · +Xn has a normal
distribution with mean µ and variance σ2 given by

µ =
n

∑

i=1

µi,

σ2 =
n

∑

i=1

σ2
i

(b) If X1, X2, · · · , Xn are independent and each is exponential with parameter
λ, then Y = X1 +X2 + · · · +Xn has a gamma distribution with parameters
λ = λ and w = n.
(c) If X1, X2, · · · , Xn are independent and each is gamma with parameters
λ,wi, then Y = X1+X2+ · · ·+Xn has a gamma distibution with parameters
λ and w = w1 + · · ·+ wn.

We will prove the theorem by proving statements about generating func-
tions. For example, for part (a) what we will really prove is that the moment
generating function of Y is that of a normal with the stated parameters.
To complete the proof we need to know that if two random variables have
the same moment generating functions then they have the same densities.
This is a theorem but it is a hard theorem and it requires some technical
assumptions on the random variables. We will ignore these subtleties and
just assume that if two RV’s have the same mgf, then they have the same
density.

Proof. We prove all three parts by simply computing the mgf’s involved.
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6.6 Cumulative distribution functions and more inde-

pendence

Recall that for a discrete random variable X we have a probability mass
function fX(x) which is just fX(x) = P(X = x). And for a continuous
random variable X we have a probability density function fX(x). It is a
density in the sense that if ǫ > 0 is small, then P(x ≤ X ≤ x+ ǫ) ≈ f(x)ǫ.

For both types of random variables we have a cumulative distribution
function and its definition is the same for all types of RV’s.

Definition 4. Let X, Y be random variables (discrete or continuous). Their
joint (cumulative) distribution function is

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

If X and Y are jointly continuous then we can compute the joint cdf from
their joint pdf:

FX,Y (x, y) =

∫ x

−∞

[
∫ y

−∞

f(u, v) dv

]

du

If we know the joint cdf, then we can compute the joint pdf by taking partial
derivatives of the above :

∂2

∂x∂y
FX,Y (x, y) = f(x, y)

The joint cdf has properties similar to the cdf for a single RV.

Proposition 5. Let F (x, y) be the joint cdf of two continuous random vari-
ables. Then F (x, y) is a continuous function on R

2 and

lim
x,y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = 1,

F (x1, y) ≤ F (x2, y) if x1 ≤ x2, F (x, y1) ≤ F (x, y2) if y1 ≤ y2

lim
x→∞

F (x, y) = FY (y) lim
y→∞

F (x, y) = FX(x)

We will use the joint cdf to prove more results about independent of RV’s.
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Theorem 3. If X and Y are jointly continuous random variables then they
are independent if and only if FX,Y (x, y) = FX(x)FY (y).

The theorem is true for discrete random variables as well.

Proof.

Example: Suppose that the joint cdf of X and Y is

F (x, y) =











1
2
(1− e−2x)(y + 1) if x ≥ 0,−1 ≤ y ≤ 1

(1− e−2x) if x ≥ 0, y ≥ 1
0 if x ≥ 0, y < −1
0 if x < 0

Show that X and Y are independent and find their joint density.

Theorem 4. If X and Y are independent jointly continuous random vari-
ables and g and h are functions from R to R then g(X) and h(Y ) are inde-
pendent random variables.

We will only prove a special case of the theorem. In the homework you
prove two other special cases.

Proof. We prove the theorem for g and h that are increasing. We also assume
they are differentiable. Let W = g(X), Z = h(Y ). By the previous theorem
we can show that W and Z are independent by showing that FW,Z(w, z) =
FW (w)FZ(z). We have

FW,Z(w, z) = P(g(X) ≤ w, h(Y ) ≤ z)

Because g and h are increasing, the event {g(X) ≤ w, h(Y ) ≤ z} is the same
as the event {X ≤ g−1(w), Y ≤ h−1(z)}. So

FW,Z(w, z) = P(X ≤ g−1(w), Y ≤ h−1(z))

= FX,Y (g
−1(w), h−1(z)) = FX(g

−1(w))FY (h
−1(z))

where the last equality comes from the previous theorem and the indepen-
dence of X and Y . The individual cdfs of W and Z are

FW (w) = P(X ≤ g−1(w)) = FX(g
−1(w))

FZ(z) = P(Y ≤ h−1(z)) = FY (h
−1(z))

So we have shown FW,Z(w, z) = FW (w)FZ(z).
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Corollary 2. If X and Y are independent jointly continuous random vari-
ables and g and h are functions from R to R then

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

Recall that for any two random variables X and Y , we have E[X + Y ] =
E[X] + E[Y ]. If they are independent we also have

Theorem 5. If X and Y are independent and jointly continuous, then

var(X + Y ) = var(X) + var(Y )

Proof.

6.7 Change of variables

Suppose we have two random variables X and Y and we know their joint
density. We have two functions g : R2 → R and g : R2 → R, and we define
two new random variables by U = g(X, Y ), W = h(X, Y ). Can we find
the joint density of U and W? In principle we can do this by computing
their joint cdf and then taking partial derivatives. In practice this can be a
mess. There is a another way involving Jacobians which we will study in this
section. But we start by illustrating the cdf approach with an example.

Example Let X and Y be independent standard normal RV’s. Let U =
X + Y and W = X − Y . Find the joint density of U and W . After a lot of
computation you should find that U and W are independent and each is a
normal RV with mean zero and variance 2.

There is a another way to compute the joint density of W,Y that we
will now study. First we return to the case of a function of a single random
variable. Support that X is a continuous random variable and we know it’s
density. g is a function from R to R and we define a new random variable
Y = g(Z). We want to find the density of Y . Our previous approach was to
compute the cdf first. Now suppose that g is strictly increasing on the range
of X. Then we have the following formula.

Proposition 6. If X is a continuous random variable whose range is D and
f : D → R is strictly increasing and differentiable, then

fY (y) = fX(g
−1(y))

d

dy
g−1(y)
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Proof.

P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) =

∫ g−1(y)

−∞

fX(x) dx

Now differentiate both sides with respect to y to finish the proof.

We review some multivariate calculus. Let D and S be open subsets of
R

2. Let T (x, y) be a map from D to S that is 1-1 and onto. (So it has an
inverse.) We also assume it is differentiable. For each point in D, T (x, y) is
in R

2. So we can write T as T (x, y) = (u(x, y), w(x, y)) We have an integral
∫ ∫

D

f(x, y) dxdy

that we want to rewrite as an integral over S with respect to u and w. This
is like doing a substitution in a one-dimensional integral. In that case you
have dx = dx

du
du The analog of dx/du here is the Jacobian

J(u, w) = det

(

∂x
∂u

∂x
∂w

∂y
∂u

∂y
∂w

)

=
∂x

∂u

∂y

∂w
−

∂y

∂u

∂x

∂w

We then have
∫ ∫

D

f(x, y) dxdy =

∫ ∫

S

f(T−1(u, w)) |J(u, w)| dudw

Often f(T−1(u, w)) is simply written as f(u, w). In practice you write f ,
which is originally a function of x and y as a function of u and w.

If A is a subset of D, then we have
∫ ∫

A

f(x, y) dxdy =

∫ ∫

T (A)

f(T−1(u, w)) |J(u, w)| dudw

We now state what this results says about joint pdf’s.

Proposition 7. Let T (x, y) be a 1-1, onto map from D to S. Let X, Y be
random variables such that range of (X, Y ) is D, and let fX,Y (x, y) be their
joint density. Define two new random variables by (U,W ) = T (X, Y ). Then
the range of (U,W ) is S and their joint pdf on this range is

fU,W (u, w) = f(T−1(u, w)) |J(u, w)|

where the Jacobian J(u, w) is defined above.
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Example - Polar coordinates Let X and Y be independent standard

normal random variables. Define new random variables R,Θ by

x = r cos(θ), y = r sin(θ)

Find the joint density of R,Θ.
Some calculation shows the Jacobian is r. (This is the same r you saw in

vector calc: dxdy = rdrdθ. ) And the joint density is

fR,Θ(r, θ) =

{

1
2π
re−r2/2 if r ≥ 0, 0 ≤ θ ≤ 2π

0, otherwise

Note that this implies that R and Θ are independent.

Example We redo the example that we started this section with and did
using the joint cdf. X and Y are independent standard normal RV’s. U =
X + Y and W = X − Y .

Example Let X and Y be independent random variables. They both have
an exponential distribution with λ = 1. Let

U = X + Y,

W =
X

X + Y

Find the joint density of U and W .
Let T (x, y) = (x + y, x

x+y
). Then T is a bijection from [0,∞) × [0,∞)

onto [0,∞)× [0, 1]. We need to find its inverse, i.e., find x, y in terms of u, w.
Multiply the two equations to get x = uw. Then y = u − x = u − uw. So
T−1(u, w) = (uw, u− uw). And so

J(u, w) = det

(

∂x
∂u

∂x
∂w

∂y
∂u

∂y
∂w

)

= det

(

w u
1− w −u

)

= −u

So

fU,W (u, w) =

{

ue−u if u ≥ 0, 0 ≤ w ≤ 1
0, otherwise

Example Let X and Y be independent random variables. X has a gamma
distribution with parameters λ = 1 and w = 2. Y has an exponential
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distribution with parameter λ = 1. Let U = X + Y and W = Y/X. Find
the joint pdf of U,W .

X = U/(1 + V ), Y = UV/(1 + V ).
Jacobian is U/(1 + V )2.

Bivariate normal If X and Y are independent standard normal RV’s, then
their joint density is proportional to exp(−1

2
(x2+ y2)). This is a special case

of a bivariate normal distribution. In the more general case they need not
be independent. We find consider a special case of the bivariate normal. Let
−1 < ρ < 1. Define

f(x, y) =
1

2π
√

1− ρ2
exp(−

1

2(1− ρ2)
(x2 − 2ρxy + y2))

You can compute the marginals of this joint distribution by the usual trick of
completing the square. You find that X and Y both have a standard normal
distribution. Note that the stuff in the exponential is a quadratic form in x
and y. A more general quadratic form would have three parameters:

exp(−(Ax2 + 2Bxy + Cy2))

In order for the intergal to converge the quadratic form Ax2 + 2Bxy + Cy2

must be positive.
Now suppose we start with two independent random variables X and Y

which are independent and define

U = aX + bY, W = cX + dY

where a, b, c, d are real numbers. In matrix notation

(

U
W

)

=

(

a b
c d

)(

X
Y

)

What is the joint density of U and W ? The transformation T is linear and
so its inverse is linear (assuming it is invertible). So the Jacobian will just
be a constant. So the joint density of U,W will be of the form exp(−1

2
mess)

where mess is what we get when we rewrite x2 + y2 in terms of u and w.
Argue this will be of the form Au2 + 2Buw + Cw2. So we get some sort of
bivariate normal.
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This can be generalized to n RV’s. A joint normal (or Gaussian) distri-
bution is of the form

c exp(−
1

2
(x,Mx))

whereM is a positive definite n by nmatrix and c is the normalizing constant.

Correlation coefficient

If X and Y are independent, then E[XY ] − E[X]E[Y ] = 0. If there are
not independent, it need not be zero and it is in some sense a measure of
how dependent they are.

Definition 5. The covariance of X and Y is

cov(X, Y ) = E[XY ]− E[X]E[Y ]

The correlation coefficient is a

ρ(X, Y ) =
cov(X, Y )

√

var(X)
√

var(Y )

The correlation coefficient has the advantage that it is scale invariant:
ρ(aX, bY ) = ρ(X, Y ). It can be shown that for any random variables −1 ≤
ρ(X, Y ) ≤ 1.

Bivariate normal - cont We return to the joint density

f(x, y) =
1

2π
√

1− ρ2
exp(−

1

2(1− ρ2)
(x2 − 2ρxy + y2))

Note that f(−x,−y) = f(x, y). This implies E[X] = E[Y ] = 0. So
cov(X, Y ) = E[XY ].

E[XY ] =
1

2π
√

1− ρ2

∫ ∫

xy exp(−
x2 − 2ρxy + y2

2(1− ρ2)
) dxdy

=
1

2π
√

1− ρ2

∫

x exp(−
1

2(1− ρ2)
x2)

[
∫

y exp(−
y2 − 2ρxy

2(1− ρ2)
) dy

]

dx

=
1

2π
√

1− ρ2

∫

x exp(−
1

2(1− ρ2)
x2)

[
∫

y exp(−
(y − ρx)2 − ρ2x2

2(1− ρ2)
) dy

]

dx
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=
1

2π
√

1− ρ2

∫

x exp(−
1

2
x2)

[
∫

(y + ρx) exp(−
y2

2(1− ρ2)
) dy

]

dx

= ρ
1

2π
√

1− ρ2

[
∫

x2 exp(−
1

2
x2) dx

] [
∫

exp(−
y2

2(1− ρ2)
) dy

]

= ρ

So the correlation coefficient is ρ. Of coure this is why we wrote the density
in the form that we did.

6.8 Conditional density and expectation

We first review what we have done. For events A,B,

P(A|B) =
P(A ∩ B)

P(B)

provided P(B) > 0. If we defineQ(A) = P(A|B), thenQ is a new probability
measure.

Let X be a discrete RV with pmf fX(x). If we know B occurs the pmf
for X will be different. The conditional pmf of X given B is

f(x|B) = P(X = x|B) =
P(X = x,B)

P(B)

The conditional expectation of X given B is

E[X|B] =
∑

x

x f(x|B)

A partition is a collection of disjoint events Bn whose union is all of the
sample space Ω. The partition theorem says that for a random variable X.

E[X] =
∑

n

E[X|Bn]P(Bn)

Most of our applications were of the following form. Let Y be another discrete
RV. Define Bn = {Y = n} where n ranges over the range of Y . Then

E[X] =
∑

n

E[X|Y = n]P(Y = n)

18



Now suppose X and Y are continuous random variables. We want to
condition on Y = y. We cannot do this since P(Y = y) = 0. How can we
make sense of something like P(a ≤ X ≤ b|Y = y) ? We can define it by a
limiting process:

lim
ǫ→0

P(a ≤ X ≤ b|y − ǫ ≤ Y ≤ y + ǫ)

Now let f(x, y) be the joint pdf of X and Y .

P(a ≤ X ≤ b|y − ǫ ≤ Y ≤ y + ǫ) =

∫ b

a

(

∫ y+ǫ

y−ǫ
f(u, w) dw

)

du

∫∞

−∞

(

∫ y+ǫ

y−ǫ
f(u, w) dw

)

du

Assuming f is continuous and ǫ is small,

∫ y+ǫ

y−ǫ

f(u, w) dw ≈ 2ǫf(u, y)

So the above just becomes

∫ b

a
2ǫf(u, y)du

∫∞

−∞
2ǫf(u, y)du

=

∫ b

a

f(u, y)

fY (y)
du

This motivates the following definition:

Definition 6. Let X, Y be jointly continuous RV’s with pdf fX,Y (x, y). The
conditional density of X given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, if fY (y) > 0

When fY (y) = 0 we can just define it to be 0. We also define

P(a ≤ X ≤ b|Y = y) =

∫ b

a

fX|Y (x|y) dx

We have made the above definitions. We could have defined fX|Y and
P(a ≤ X ≤ b|Y = y) as limits and then proved the above as theorems.

What happens if X and Y are independent? Then f(x, y) = fX(x)fY (y).
So fX|Y (x|y) = fX(x) as we would expect.
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Example (X, Y ) is uniformly distributed on the triangle with vertices (0, 0), (0, 1)
and (1, 0). Find the conditional density of X given Y .

The joint density is 2 on the triangle.

fY (y) = 2

∫ 1−y

0

dx = 2(1− y), 0 ≤ y ≤ 1

And we have

fX|Y (x|y) =
2

2(1− y)
=

1

1− y
, 0 ≤ x ≤ 1− y

So given Y = y, X is uniformly distributed on [0, 1− y].
The conditional expectation is defined in the obvious way

Definition 7.

E[X|Y = y] =

∫

x fX|Y (x|y) dx

Note that E[X|Y = y] is a function of y. In our example, E[X|Y = y] =
1
2
(1− y).

Example Let X, Y be independent,each having an exponential distribution
with the same λ. Let Z = X + Y . Find fZ|X , fX|Z , E[Z|X = x] and
E[X|Z = z].

First we need to find the joint density of X and Z. We use change of
variables. Let U = X,W = X + Y . The inverse is x = u, y = w − u.The
Jacobian is

J(u, w) = det

(

∂x
∂u

∂x
∂w

∂y
∂u

∂y
∂w

)

= det

(

1 0
−1 1

)

= 1

We have fX,Y (x, y) = λ2 exp(−λ(x+ y)) for x, y ≥ 0. So

fX,Z(x, z) =

{

λ2e−λz, if 0 ≤ x ≤ z
0, otherwise

It is convenient to write the condition on x, z as 1(0 ≤ x ≤ z). This notation
means the function is 1 if 0 ≤ x ≤ z is satisfied and 0 if it is not. So
fX,Z(x, z) = λ2e−λz 1(0 ≤ x ≤ z). So we have for x ≥ 0,

fX|Z(x|z) =
fX,Z(x, z)

fX(x)
=

λ2e−λz 1(0 ≤ x ≤ z)

λe−λx
= λe−λ(z−x) 1(0 ≤ x ≤ z)
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Using this and the sub u = z − x, we find

E[Z|X = x] =

∫ ∞

x

z λe−λ(z−x) dz =

∫ ∞

0

(u+ x)λe−λu du = x+
1

λ

For the other one, we first find the marginal for Z:

fZ(z) =

∫ ∞

−∞

fX,Z(x, z) dx =

∫ ∞

−∞

λ2e−λz 1(0 ≤ x ≤ z) dx

=

∫ z

0

λ2e−λz dx = λ2ze−λz

So we have

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
=

λ2e−λz 1(0 ≤ x ≤ z)

λ2ze−λz
=

1

z
1(0 ≤ x ≤ z)

So given that Z = z, X is uniformly distributed on [0, z]. So E[X|Z = z] =
z/2.

Recall the partition theorem for discrete RV’s X and Y ,

E[Y ] =
∑

n

E[Y |X = n]P(X = n)

For continuous random variables we have

Theorem 6. Let X, Y be jointly continuous random variables. Then

E[Y ] =

∫

E[Y |X = x] fX(x) dx

where the integral is over the range of x where fX(x) > 0, i.e., the range of
X.

Proof. Recall the definition:

E[Y |X = x] =

∫

y fY |X(y|x) dy

=

∫

y
fY,X(y, x)

fX(x)
dy

So
∫

E[Y |X = x] fX(x) dx =

∫
[
∫

y fX,Y (x, y)dx

]

dy = E[Y ]
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Recall that the partition theorem was useful when it was hard to compute
the expected value of Y , but easy to compute the expected value of Y given
that some other random variable is known.

Example: Quality of lightbulbs varies because ... For fixed factory con-
ditions, the lifetime of the lightbulb has an exponential distribution. We
model this by assuming the parameter λ is uniformly distributed between
5× 10−4 and 8× 10−4. Find the mean lifetime of a lightbulb and the pdf for
its lifetime. Is it exponential?

Example: Let X, Y be independent standard normal RV’s. Let Z = X+Y .
Find fZ|X , fX|Z , E[Z|X = x] and E[X|Z = z].
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