
8 Laws of large numbers

8.1 Introduction

The following comes up very often, especially in statistics. We have an exper-
iment and a random variable X associated with it. We repeat the experiment
n times and let X1, X2, · · · , Xn be the values of the random variable we get.
We can think of the n-fold repetition of the original experiment as a sort
of super-experiment and X1, X2, · · · , Xn as random variables for it. We as-
sume that the experiment does not change as we repeat it, so that the Xj

are indentically distributed. (Recall that this means that Xi and Xj have
the same pmf or pdf.) And we assume that the different perfomances of the
experiment do not influence each other. So the random variables X1, · · · , Xn

are independent.
In statstics one typically does not know the pmf or the pdf of the Xj.

The statistician’s job is to take the random sample X1, · · · , Xn and make
conclusions about the distribution of X. For example, one would like to
know the mean, E[X], of X. The simplest way to estimate it is to look at
the “sample mean” which is defined to be

Xn =
1

n

n
∑

i

Xi

Note that Xn is itself a random variable. Intuitively we expect that as n →
∞, Xn will converge to E[X]. What exactly do we mean by “convergence”
of a sequence of random variables? And what can we say about the rate of
convergence and the error? These questions are the focus of this chapter.

We already know quite a bit about Xn. Its mean is µ = E[X]. And
its variance is σ2/n where σ2 is the common variance of the Xj . The first
theorems in this chapter will say that as n → ∞, Xn converges to the
constant µ in some sense. Results like this are called a “law of large numbers.”
We will see two of them corresponding to two different notions of convergence.
The other big theorem of this chapter is the central limit theorem. Suppose
we shift and rescale Xn as follows:

Xn − µ

σ/
√
n

We have subtracted off the mean of Xn and then divided by its variance. So
the above random variable has mean zero and variance one. The CLT says
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that it converges to a standard normal under some very mild assumptions
on the distribution of X.

8.2 Weak law of large numbers

If we roll a fair six-sided die, the mean of the number we get is 3.5. If we roll
the die a large number of times and average the numbers we get (i.e., compute
Xn), then we do not expect to get exactly 3.5, but rather something close. So
we could ask if |Xn−3.5| < 0.01. This is an event (for the super-experiment),
so we can consider its probability:

|Xn − 3.5| < 0.01

In particular we might expect this probability to go to zero as n → ∞. This
motivates the following definition.

Definition 1. Let Yn be a sequence of random variables, and Y a random
variable, all defined on the same probability space. We say Yn converges to
Y in probability if for every ǫ > 0,

lim
n→∞

P(|Yn − Y | > ǫ) = 0

Theorem 1. (Weak law of large numbers) Let Xj be an i.i.d. sequence
with finite mean and variance. Let µ = E[Xj ]. Then

Xn =
1

n

n
∑

j=1

Xj → µ in probability

There are better versions of the theorem in the sense that they have
weaker hypotheses (you don’t need to assume the variance is finite). There
is also a stronger theorem that has a stronger form of convergence (strong
law of large numbers).

We will eventually prove the theorem, but first we introduce another
notion of convergence.

Definition 2. Let Yn be a sequence of random variables with finite variance
and Y a random variable with finite variance. We say that Yn converges to
Y in mean square if

lim
n→∞

E[(Yn − Y )2] = 0
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In analysis this is often called convergence in L2.

Proposition 1. Let Xn be a sequence of i.i.d. random variables with finite
variance. Let µ = E[Xn]. Then Xn coverges to µ in mean square.

Proof. We have to show

lim
n→∞

E[(Xn − µ)2] = 0

But since the mean of Xn is µ, E[(Xn−µ)2] is the variance of Xn. We know
that this variance is σ2/n which obviously goes to zero as n → ∞.

Next we show that convergence in mean square implies convergence in
probability. The tool to show this is the following inequality:

Proposition 2. (Chebyshev’s inequality)

P(|X| ≥ a) ≤ E[X2]

a2

Proof. To make things concrete we assume we have a continuous RV. Then
letting f(x) be the pdf of X,

E[X2] =

∫ ∞

−∞
x2 f(x) dx

Since the integrand is non-negative,

E[X2] ≥
∫

|x|≥a

x2 f(x) dx ≥
∫

|x|≥a

a2 f(x) dx

= a2
∫

|x|≥a

f(x) dx = a2P(|X| ≥ a)

Thus we have the inequality in the proposition.

Proposition 3. Let Yn is a sequence of random variables with finite variance
and Y is a random variable with finite variance. Suppose Yn converges to Y
in mean square. Then it converges in probability.
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Proof. Let ǫ > 0. We must show

lim
n→∞

P(|Yn − Y | > ǫ) = 0

By Chebyshev’s inequality,

P(|Yn − Y | > ǫ) ≤ E[(Yn − Y )2]

ǫ2

By hypothesisE[(Yn−Y )2] → 0 as n → ∞. So for a fixed ǫ, E[(Yn−Y )2]/ǫ2 →
0 as n → ∞.

8.3 Central limit theorem

Let Xn be an i.i.d. sequence with finite variance. Let µ the their common
mean and σ2 their common variance. As before we let Xn = 1

n

∑n
j=1

Xj.
Define

Zn =
Xn − µ

σ/
√
n

=

∑n
j=1

Xj − nµ
√
nσ

Note that E[Zn] = 0, var(Zn) = 1. The best way to remember the definition
is that it is Xn shifted and scaled so that it has mean 0 and variance 1. The
central limit theorem says that the distribution of Zn converges to a standard
normal. There are several senses in which it might converge, so we have to
make this statement more precise. We might ask if the density function of
Zn converges to that of a standard normal, ie., 1√

2π
exp(−z2/2). We do not

assume that Xn is a continuous RV. If it is a discrete RV, then so is Zn. So
it does not even have a density function. Instead we look at the probability
that Zn is in some interval [a, b].

Theorem 2. (Central limit theorem) Let Xn be an i.i.d. sequence of
random variables with finite mean µ and variance σ2. Define Zn as above.
Then for all a < b

lim
n→∞

P(a ≤ Zn ≤ b) =

∫ b

a

1√
2π

e−z2/2 dz

If we take a = −∞, then the theorem says that the cdf of Zn converges
pointwise to the cdf of the standard normal. This is an example of what
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is called “convergence in distribution” in probability. However, we caution
the reader that the general definition of convergence in distribution involves
some technicalities.

This is the most important theorem in the course and plays a major role
in statistics. In particular much of the theory of confidence intervals and
hypothesis testing is the central limit theorem in disguise.
Example: A computer has a random number generator that generates ran-
dom numbers uniformly distributed in [0, 1]. We run it 100 times and let
Sn be the sum of the 100 numbers. Estimate P(Sn ≥ 52). Let Xj be the
numbers. So E[Xj ] = 1/2 and var(Xj) = 1/12. So

Zn =
Sn − nµ√

nσ
=

Sn − 100× 1/2

10
√

1/12

So Sn ≥ 52 is the same as

Zn ≥ 52− 100× 1/2

10
√

1/12
=

2
√
12

10
= 0.6928

So P(Sn ≥ 52) = P(Zn ≥ 0.6928). Now we approximate P(Zn ≥ 0.6928)
by assuming Zn has a standard normal distribution. Then we can “look
up” P(Zn ≥ 0.6928) in R. We use P(Zn ≥ 0.6928) = 1 − P(Zn ≤ 0.6928).
In R we get P(Zn ≤ 0.6928) from pnorm(0.6928). (This is the same as
pnorm(0.6928, 0, 1). If you don’t specify a mean and variance when you call
pnorm() it assumes a standard normal.) So we find

P(Sn ≥ 52) = P(Zn ≥ 0.6928) = 1−P(Zn ≤ 0.6928) ≈ 1− 0.7548 = 0.2442

Example: We flip a fair coin n times. How large must n be to have
P(|(fraction of H)− 1/2| ≥ 0.01) ≤ 0.05.

According to R, qnorm(0.975) = 1.959964. This means that for a stan-
dard normal Z, P(Z ≤ 1.959964) = 0.975. By symmetry, P(|Z| ≤ 1.959964) =
0.95. So P(|Z| ≥ 1.959964) = 0.05. Let Xj be 1 if there is H on jth flip, 0 if
it is T. Let Xn be the usual. Then Xn is the fraction of heads. For a single
flip the variance is p(1− p) = 1/4. So σ = 1/2. So

Zn =
Xn − 1/2

σ
√
n

=
Xn − 1/2√

n/2
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So |Xn − 1/2| ≥ 0.01 is the same as |Zn| ≥ 0.01n
σ
√
n
, i.e., |Zn| ≥ 0.02

√
n. So

P(|(fraction of H)− 1/2| ≥ 0.01) ≤ 0.05 = P(|Zn| ≥ 0.02
√
n)

So it this is to be less than 0.05 we need 0.02
√
n ≥ 2. So n ≥ 10, 000.

End of ? lecture

Confidence intervals: The following is an important problem in statistics.
We have a random variable X (usually called the population). We know its
variance σ2, but we don’t know its mean µ. We have a “random sample,” i.e.,
random variables X1, X2, · · · , Xn which are independent random variables
which all have the same distribution as X. We want to use our one sample
X1, · · · , Xn to estimate µ. The natural estimate for µ is the sample mean

Xn =
1

n

n
∑

j=1

Xj

How close is Xn to the true value of µ ? This is a vague question. We make
it precise as follows. For what ǫ > 0 will P(|Xn − µ| ≤ ǫ) = 0.95 ? We say
the [Xn − ǫ,Xn + ǫ] is a 95% confidence interval for µ. (The choice of 95%
is somewhat arbitrary. We can use 98% for example.

If n is large we can use the CLT to figure out what ǫ should be. As before
we let

Zn =
Xn − µ

σ/
√
n

So |Xn − µ| ≤ ǫ is equivalent to |Zn| ≤ ǫ
√
n/σ So we want

P(|Zn| ≤ ǫ
√
n/σ) = 0.95

The CLT says that the distribution for Zn is approximately that of a standard
normal. If Z is a standard normal, then P(|Z| ≤ 1.96) = 0.95. So ǫ

√
n/σ =

1.96. So we have found that the 95% confidence interval for µ is [µ− ǫ, µ+ ǫ]
where

ǫ = 1.96 ∗ σ/
√
n
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Example: We assume the lifetime of a certain brand of light bulbs is ex-
ponential with a mean of roughly 2, 000 hours. We want a better estimate
of the mean so we measure the liftimes of 25 bulbs and compute the sample
mean X̄ and get 2, 132 hours. Find a 95% confidence interval.

The 1/2 game : Suppose X1, X2, · · · are i.i.d. and integer valued. For
example, we flip a coin repeatedly and let Xn be 1 if we get heads on the
nth flip and 0 if we get tails. We want to estimate P(a ≤ Sn ≤ b), where
Sn =

∑n
j=1

Xj. We take a and b to be integers. Then

P(a− δ ≤ Sn ≤ b+ δ) = P(a ≤ Sn ≤ b)

for any positive δ < 1. But the CLT will give us different answers depending
on which δ we use. What is the best? Answer δ = 1/2. So we approximate
P(a ≤ Sn ≤ b) by

P(a− 1/2 ≤ Sn ≤ b+ 1/2) = P(
a− 1/2− nµ

σ
√
n

≤ Sn − nµ

σ
√
n

≤ b+ 1/2− nµ

σ
√
n

)

≈ P(
a− 1/2− nµ

σ
√
n

≤ Z ≤ b+ 1/2− nµ

σ
√
n

)

where Z is a standard normal.

End of Nov 18 lecture

Example: Let Xn be an i.i.d. sequence of standard normals. Let

Yn =
1

n

n
∑

j=1

X2

j

Use the CLT to find n so that P(Yn ≥ 1.01) = 5%.
Note that the the i.i.d. sequence that we apply the CLT to is X2

n not Xn.
The mean of X2

n is E[X2
n] = 1. The variance is E[X4

n]− (E[X2
n])

2 = 3−1 = 2.
The mean of Yn is 1

n
n = 1. The variance is

var(Yn) =
1

n2
n2

So to standardize,

Zn =
Yn − 1
√

2/n
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So

P(Yn ≥ 1.01) = P(
Yn − 1
√

2/n
≥ 1.01− 1

√

2/n
)

≈ P(Z ≥ 1.01− 1
√

2/n
)

where Z is a standard normal. R says that qnorm(0.95) = 1.645. So P(Z ≥
1.645) = 0.05. So

0.01
√

2/n
= 1.645,

n = (1.645)2, 000 = 54, 121

8.4 Strong law of large numbers

Suppose Xn is an i.i.d. sequence. As before

Xn =
1

n

n
∑

j=1

Xj

The weak law involves probabilities that Xn does certain things. We now
ask if limn→∞ Xn exists and what does it converge to. Each Xn is a random
variable, i.e., a function of ω, a point in the sample space. It is possible that
this limit converges to µ for some ω but not for other ω.
Example We flips a fair coin infinitely often. Let Xn be 1 if the nth flip
is heads, 0 if it is tails. Then Xn is the fraction of heads in the first n
flips. We can think of the sample space as sequences of H’s and T ’s. So one
possible ω is the sequence with all H’s. For this ω, Xn(ω) = 1 for all n. So
Xn(ω) = 1 for all n. So limn→∞ Xn exists, but it equals 1, not the mean of
Xn which is 1/2. So it is certainly not true that limn→∞ Xn = µ for all ω.
Our counterexample where we get all heads is “atypical.” So we might hope
that the set of ω for which the limit of the Xn is not µ is “small”.

Definition 3. Let Yn be a sequence of random variables and Y a random
variable. We say Xn converges to X with probability one if

P({ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1

More succintly,

P(Yn → Y ) = 1

8



This is a stronger form of convergence than convergence in probability.
(This is not at all obvious.)

Theorem 3. If Yn converges to Y with probability one, then Yn converges to
Y in probability.

Proof. Let ǫ > 0. We must show

lim
n→∞

P(|Yn − Y | ≥ ǫ) = 0

Define

E = {ω : lim
n→∞

Yn(ω) = Y (ω)}

Since Yn converges to Y with probability one, P(E) = 1. Let

En = ∩∞
k=n{ω : |Yk(ω)− Y (ω)| < ǫ}

As n gets larger, the intersection has fewer sets and so is larger. So En is an
increasing sequence. If ω ∈ E, then ω ∈ En for large enough n. So

E ⊂ ∪∞
n=1En

Since P(E) = 1, this implies P(∪∞
n=1En) = 1. By continuity of the probabil-

ity measure,

1 = P(∪∞
n=1En) = lim

n→∞
P(En)

Note that En ⊂ {|Yn − Y | < ǫ}. So P(En) ≤ P(|Yn − Y | < ǫ). Since P(En)
goes to 1 and probabilities are bounded by 1, P(|Yn − Y | < ǫ) goes to 1. So
P(|Yn − Y | ≥ ǫ) goes to 0.

8.5 Proof of central limit theorem

We give a partial proof of the central limit theorem. We will prove that the
moment generating function of Zn converges to that of a standard normal.

Let Xn be an i.i.d. sequence. We assume that µ = 0. (Explain why we
can do this.) Since the Xn are identically distributed, they have the same
mgf. Call it m(t). So

m(t) = MXn
(t) = E[etXn ]

9



As before

Zn =
Sn

σ
√
n
, Sn =

n
∑

j=1

Xj

Now

MZn
(t) = E[exp(t

Sn

σ
√
n
)] = E[exp(

t

σ
√
n
Sn)] = MSn

(
t

σ
√
n
)

Since the Xj are independent, MSn
(t) =

∏n
j=1

MXj
(t) = m(t)n. So above

becomes

MZn
(t) =

[

m(
t

σ
√
n
)

]n

Now we do a Taylor expansion of m(t) about t = 0. We do the expansion
to second order:

m(t) = m(0) +m′(0)t+
1

2
m′′(0)t2 +O(t3)

We have

m(0) = 1

m′(0) = E[Xj ] = 0

m′′(0) = E[X2

j ] = var(Xj) = σ2

So the Taylor expansion is

m(t) = 1 +
1

2
σ2t2 +O(t3)

So
[

m(
t

σ
√
n
)

]n

=

[

1 +
1

2
σ2

t2

σ2n
+O(t3σ3n−3/2)

]n

=

[

1 +
t2

2n
+O(t3σ3n−3/2)

]n

We want to show that this converges to the mgf of the standard normal which
is exp(1

2
t2). So we need to show the ln of the above converges to 1

2
t2. The ln
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of the above is

ln(MZn
(t)) = n ln

[

1 +
t2

2n
+O(t3σ3n−3/2)

]

= n

[

t2

2n
+O(t3σ3n−3/2) + · · ·

]

=
t2

2
+O(t3σ3n−1/2) + · · ·

which converges to t2/2.
The following theorem (which we do not prove) completes the proof of

the central limit under an additional hypothesis about momemnt generating
functions.

Theorem 4. (Continuity theorem) Let Xn be a sequence of random vari-
ables, X a RV. Let FXn

and FX be their cdf ’s. Let MXn
and MX be their

moment generating functions. Suppose there is an a > 0 such that MXn
(t)

and MX(t) exist for |t| < a. Suppose that for |t| < a, MXn
(t) → MX(t).

Then for all x where F (x) is continuous,

FXn
(x) → F (x)

The central limit theorem only requires that the random variables have
a finite second moment, not that their mgf exist. To proof the CLT in this
case we use “characteristic functions” instead of mgf’s.

Definition 4. The characteristic function of a random variable X is

φX(t) = E[eitX ] = E[cos(tX) + i sin(tX)]

Since | cos(tX)|, | sin(tX)| ≤ 1, the characteristic function is defined for all t
for any random variable.

For a continuous random variable with density fX(x),

φX(t) =

∫ ∞

−∞
eitx fX(x) dx

This is just the Fourier transform of fX(x) For a normal random variable
the computation of the characteristic function is almost identical to that of
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the mfg. We find for a standard normal random variable X that φZ(t) =
exp(−t2/2).

If X and Y are independent, then

φX+Y (t) = φX(t) + φY (t)

We also note that for a constant c, the characteristic function of cX is
φcX(t) = φX(ct).

Now let X have the Cauchy distribution. An exercise in contour integra-
tion shows

φX(t) =
1

π

∫ ∞

−∞

eixt

x2 + 1
dx = e−|t|

Now let Xn be an iid sequence of Cauchy random variables. So if we let Sn

be their sum, then

φSn
(t) = exp−n|t|

This is the characteristic function of n times a Cauchy distribution. So

1

n

n
∑

j=1

Xj

has a Cauchy random variable. Note that the CLT would say

1√
n

n
∑

j=1

Xj

converges to a normal. So instead of the CLT theorem we see that if we
rescale differently then in the limit we get a Cauchy distributions. There are
random variables other than Cauchy for which we also get convergence to
the Cauchy distribution.

Convergence of Binormial to Poisson ????????????????

8.6 Proof of strong law of large numbers

Borel Cantelli
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