8 Laws of large numbers

8.1 Introduction

The following comes up very often, especially in statistics. We have an exper-
iment and a random variable X associated with it. We repeat the experiment
n times and let Xy, Xy, -+, X,, be the values of the random variable we get.
We can think of the n-fold repetition of the original experiment as a sort
of super-experiment and Xy, X», -+, X,, as random variables for it. We as-
sume that the experiment does not change as we repeat it, so that the X;
are indentically distributed. (Recall that this means that X; and X; have
the same pmf or pdf.) And we assume that the different perfomances of the
experiment do not influence each other. So the random variables X, ---, X,
are independent.

In statstics one typically does not know the pmf or the pdf of the X;.
The statistician’s job is to take the random sample Xi,---, X, and make
conclusions about the distribution of X. For example, one would like to
know the mean, E[X], of X. The simplest way to estimate it is to look at
the “sample mean” which is defined to be
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Note that X, is itself a random variable. Intuitively we expect that as n —
o0, X, will converge to E[X]. What exactly do we mean by “convergence”
of a sequence of random variables? And what can we say about the rate of
convergence and the error? These questions are the focus of this chapter.

We already know quite a bit about X,. Its mean is y = E[X]. And
its variance is 0%/n where o2 is the common variance of the X;. The first
theorems in this chapter will say that as n — oo, X, converges to the
constant p in some sense. Results like this are called a “law of large numbers.”
We will see two of them corresponding to two different notions of convergence.
The other big theorem of this chapter is the central limit theorem. Suppose
we shift and rescale X,, as follows:

X — K
a/Vn

We have subtracted off the mean of X,, and then divided by its variance. So
the above random variable has mean zero and variance one. The CLT says




that it converges to a standard normal under some very mild assumptions
on the distribution of X.

8.2 Weak law of large numbers

If we roll a fair six-sided die, the mean of the number we get is 3.5. If we roll
the die a large number of times and average the numbers we get (i.e., compute
X,), then we do not expect to get exactly 3.5, but rather something close. So
we could ask if | X,, —3.5| < 0.01. This is an event (for the super-experiment),
so we can consider its probability:

|X, — 3.5/ <0.01

In particular we might expect this probability to go to zero as n — oo. This
motivates the following definition.

Definition 1. Let Y, be a sequence of random wariables, and Y a random
variable, all defined on the same probability space. We say Y, converges to
Y in probability if for every e > 0,

lim P(]Y,, = Y| >¢) =0

n—oo

Theorem 1. (Weak law of large numbers) Let X; be an i.i.d. sequence
with finite mean and variance. Let = E[X;]. Then

- _1¢ . "
X, = - ZlXj — i n probability
-

There are better versions of the theorem in the sense that they have
weaker hypotheses (you don’t need to assume the variance is finite). There
is also a stronger theorem that has a stronger form of convergence (strong
law of large numbers).

We will eventually prove the theorem, but first we introduce another
notion of convergence.

Definition 2. Let Y, be a sequence of random variables with finite variance
and Y a random variable with finite variance. We say that Y, converges to
Y in mean square if

lim E[(Y,, —Y)?] =0

n—oo



In analysis this is often called convergence in L2.

Proposition 1. Let X,, be a sequence of i.i.d. random variables with finite
variance. Let = E[X,]. Then X,, coverges to p in mean square.

Proof. We have to show

lim E[(X, —u)?] =0

n—o0

But since the mean of X, is u, E[(X,, — u)?] is the variance of X,,. We know
that this variance is 02 /n which obviously goes to zero as n — oo. O]

Next we show that convergence in mean square implies convergence in
probability. The tool to show this is the following inequality:

Proposition 2. (Chebyshev’s inequality )

E[X?]

a2

P(|X|>a) <

Proof. To make things concrete we assume we have a continuous RV. Then
letting f(x) be the pdf of X,

E[X?] = /oo 2% f(z)dx

Since the integrand is non-negative,
E[X? > / 2? f(z)dr > / a® f(z) dx
|z|>a lz|>a

= a f(z)dx = a®P(|X| > a)

|z[>a
Thus we have the inequality in the proposition. O

Proposition 3. LetY,, is a sequence of random variables with finite variance
and Y is a random variable with finite variance. Suppose Y, converges to'Y
in mean square. Then it converges in probability.



Proof. Let € > 0. We must show

lim P(|Y, —Y|>¢) =0

n—oo
By Chebyshev’s inequality,
E[(Y, —Y)’]

P(|Y,-Y|>¢ < 5

€
By hypothesis E[(Y,,—Y)?] — 0 asn — oo. So for a fixed ¢, E[(Y,,—Y)?]/e* —
0 as n — oo. [

8.3 Central limit theorem

Let X, be an i.i.d. sequence with finite variance. Let p the their common
mean and o? their common variance. As before we let X,, = %Z?:l X;.
Define

_ Xn_ﬂ _ Z?:lXj_nM
a/v/n Vno

Note that E[Z,] = 0,var(Z,) = 1. The best way to remember the definition
is that it is X, shifted and scaled so that it has mean 0 and variance 1. The
central limit theorem says that the distribution of Z,, converges to a standard
normal. There are several senses in which it might converge, so we have to
make this statement more precise. We might ask if the density function of
Z, converges to that of a standard normal, ie., \/LQ? exp(—22%/2). We do not
assume that X, is a continuous RV. If it is a discrete RV, then so is Z,. So
it does not even have a density function. Instead we look at the probability
that Z, is in some interval [a, b].

Zn

Theorem 2. (Central limit theorem) Let X, be an i.i.d. sequence of
random variables with finite mean p and variance o®. Define Z, as above.

Then for all a < b

1

b
lim P(a < Z, <b) = e 2 dz
n—00 ( - - ) L /2
If we take a = —o0, then the theorem says that the cdf of Z,, converges

pointwise to the cdf of the standard normal. This is an example of what
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is called “convergence in distribution” in probability. However, we caution
the reader that the general definition of convergence in distribution involves
some technicalities.

This is the most important theorem in the course and plays a major role

in statistics. In particular much of the theory of confidence intervals and
hypothesis testing is the central limit theorem in disguise.
Example: A computer has a random number generator that generates ran-
dom numbers uniformly distributed in [0,1]. We run it 100 times and let
S, be the sum of the 100 numbers. Estimate P(S,, > 52). Let X, be the
numbers. So E[X;| =1/2 and var(X;) = 1/12. So

~ Sp—np S, —100x1/2

Vno 104/1/12

Zn

So S,, > 52 is the same as

S 52 —100 x 1/2  2v/12

> — 0.6928
104/1/12 10

So P(S, > 52) = P(Z, > 0.6928). Now we approximate P(Z, > 0.6928)
by assuming Z, has a standard normal distribution. Then we can “look
up” P(Z, > 0.6928) in R. We use P(Z, > 0.6928) = 1 — P(Z,, < 0.6928).
In R we get P(Z, < 0.6928) from pnorm(0.6928). (This is the same as
pnorm(0.6928,0,1). If you don’t specify a mean and variance when you call
pnorm() it assumes a standard normal.) So we find

P(S, > 52) = P(Z, > 0.6928) = 1 — P(Z, < 0.6928) ~ 1 — 0.7548 = (.2442

Example: We flip a fair coin n times. How large must n be to have
P(|(fractionof H) — 1/2| > 0.01) < 0.05.

According to R, gnorm(0.975) = 1.959964. This means that for a stan-
dard normal Z, P(Z < 1.959964) = 0.975. By symmetry, P(|Z] < 1.959964) =
0.95. So P(|Z| > 1.959964) = 0.05. Let X; be 1 if there is H on jth flip, 0 if
it is T. Let X,, be the usual. Then X, is the fraction of heads. For a single
flip the variance is p(1 —p) =1/4. So 0 = 1/2. So

X,—1/2 X,—1/2

Y TN T




So | X, — 1/2] > 0.01 is the same as |Z,| > %42 je.. |Z,] > 0.02/n. So
ov/n

P(|(fractionof H) —1/2] > 0.01) < 0.05 = P(|Z,| > 0.02y/n)

So it this is to be less than 0.05 we need 0.024/n > 2. So n > 10, 000.

End of ? lecture

Confidence intervals: The following is an important problem in statistics.
We have a random variable X (usually called the population). We know its
variance o2, but we don’t know its mean ;. We have a “random sample,” i.e.,
random variables X, Xy, -+, X,, which are independent random variables
which all have the same distribution as X. We want to use our one sample
Xq,--+, X, to estimate pu. The natural estimate for u is the sample mean

— 1 <&
Xn:ﬁjzlxj

How close is X, to the true value of ;1 ? This is a vague question. We make
it precise as follows. For what ¢ > 0 will P(|X,, — u| <€) = 0.95 ? We say
the [X, — ¢, X,, + €] is a 95% confidence interval for x. (The choice of 95%
is somewhat arbitrary. We can use 98% for example.

If n is large we can use the CLT to figure out what e should be. As before
we let

_ Xa—p
~ o/vn

So | X, — pu| < € is equivalent to |Z,| < ey/n/o So we want

Zn

P(|Z,| < ev/n/o) = 0.95

The CLT says that the distribution for Z,, is approximately that of a standard
normal. If Z is a standard normal, then P(|Z| < 1.96) = 0.95. So ey/n/o =
1.96. So we have found that the 95% confidence interval for u is [ — €, pu + €]
where

e=196x0/\/n



Example: We assume the lifetime of a certain brand of light bulbs is ex-
ponential with a mean of roughly 2,000 hours. We want a better estimate
of the mean so we measure the liftimes of 25 bulbs and compute the sample
mean X and get 2,132 hours. Find a 95% confidence interval.

The 1/2 game : Suppose Xj, Xs,--- are i.i.d. and integer valued. For
example, we flip a coin repeatedly and let X,, be 1 if we get heads on the
nth flip and 0 if we get tails. We want to estimate P(a < 5, < b), where
Sy = Z?Zl X;. We take a and b to be integers. Then

for any positive 0 < 1. But the CLT will give us different answers depending
on which 6 we use. What is the best? Answer § = 1/2. So we approximate
P(a < S, <b) by

Pla—1/2<8, <bt1/2) — P2z Swznp b+ 1/2-np

o\vn ~ oyn — o\v/n
P<a—1/2—nu<Z<b+1/2—nu

o S0 e m )

Q

where Z is a standard normal.

End of Nov 18 lecture

Example: Let X,, be an i.i.d. sequence of standard normals. Let

1 n
Yn:ﬁ;XjQ

Use the CLT to find n so that P(Y,, > 1.01) = 5%.

Note that the the i.i.d. sequence that we apply the CLT to is X2 not X,,.
The mean of X? is E[X?] = 1. The variance is E[X}] — (E[X?])2 =3 -1 = 2.
The mean of Y,, is %n = 1. The variance is

1
var(Y,) = EHQ
So to standardize,
Y,—1

NoT
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So
Y,—1_ 1.01—1

P(Y,>1.01) = P( 2/n2 2/n)
N P(ZZ1.012/—H1)

where Z is a standard normal. R says that gnorm(0.95) = 1.645. So P(Z >
1.645) = 0.05. So

0.01

Norm

n = (1.645)2,000 = 54,121

= 1.645,

8.4 Strong law of large numbers

Suppose X,, is an i.i.d. sequence. As before

— ] —
Xn_ﬁjzlxj

The weak law involves probabilities that X, does certain things. We now
ask if lim,,_,o X,, exists and what does it converge to. Each X, is a random
variable, i.e., a function of w, a point in the sample space. It is possible that
this limit converges to u for some w but not for other w.

Example We flips a fair coin infinitely often. Let X, be 1 if the nth flip
is heads, 0 if it is tails. Then X, is the fraction of heads in the first n
flips. We can think of the sample space as sequences of H’s and T’s. So one
possible w is the sequence with all H’s. For this w, X,(w) = 1 for all n. So
X,(w) =1 for all n. So lim,_,, X, exists, but it equals 1, not the mean of
X, which is 1/2. So it is certainly not true that lim, . X, = w for all w.
Our counterexample where we get all heads is “atypical.” So we might hope
that the set of w for which the limit of the X, is not u is “small”.

Definition 3. Let Y, be a sequence of random variables and Y a random
variable. We say X,, converges to X with probability one if

PH{w: lim Y, (w) =Y (w)}) =1
n—oo
More succintly,

P(Y, »Y)=1



This is a stronger form of convergence than convergence in probability.
(This is not at all obvious.)

Theorem 3. IfY, converges toY with probability one, then 'Y, converges to
Y in probability.

Proof. Let € > 0. We must show

lim P(]Y,, = Y| >¢) =0

n—o0

Define

E={w: lim Y,(w) =Y(w)}

n—oo

Since Y,, converges to Y with probability one, P(F) = 1. Let
E,=n2 {w: |Yi(w) =Y (w)| <€}

As n gets larger, the intersection has fewer sets and so is larger. So F, is an
increasing sequence. If w € F, then w € E,, for large enough n. So

Ecu3 E,

Since P(F) = 1, this implies P(U | E,,) = 1. By continuity of the probabil-
ity measure,

1=P(U2,E,) = lim P(E,)

n—oo

Note that £, C {|Y, — Y| <¢€}. So P(E,) < P(]Y, — Y| <e¢). Since P(E,)
goes to 1 and probabilities are bounded by 1, P(|Y,, — Y| <€) goes to 1. So
P(]Y, — Y| > ¢€) goes to 0. O

8.5 Proof of central limit theorem

We give a partial proof of the central limit theorem. We will prove that the
moment generating function of Z,, converges to that of a standard normal.

Let X, be an i.i.d. sequence. We assume that p = 0. (Explain why we
can do this.) Since the X, are identically distributed, they have the same
mgf. Call it m(¢). So

m(t) = Mx, (t) = Ele"]
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As before

Now

Sh t t

PPV =R - = Mo (——

O'\/ﬁ)] [exp(a\/ﬁs’n)] Sn(O’\/ﬁ)

Since the X are independent, Ms, (t) = [[;_, Mx,(t) = m(t)". So above
becomes

My, (t) = Elexp(t

Mz )= ()]

Now we do a Taylor expansion of m(t) about t = 0. We do the expansion
to second order:

m(#) = m(0) + m'(0)t + %m”(O)tQ + O
We have

m(0) = 1
w(0) = BX] =
m”(0) = E[X?]=var(X;)= o>

So the Taylor expansion is

m(t) =1+ %O’Qtz +O(t?)

So
N 1, ¢ : "
v _ 142 3.3 -3/2
[m(a\/ﬁ)l [ + 50— +O(t°o°n )]
t? "
— |1 3.3 —3/2
[ +5,. + O(t°o°n )}

We want to show that this converges to the mgf of the standard normal which
is exp(%tQ). So we need to show the In of the above converges to %tQ. The In
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of the above is

2
In(Mg,(t)) = nln [1 + ;—n + O(t3a3n_3/2)}

t2
= n {% + O ™32) + - }

t?
= 5+ O(t3c®n=1?%) 4 ...

which converges to t2/2.

The following theorem (which we do not prove) completes the proof of
the central limit under an additional hypothesis about momemnt generating
functions.

Theorem 4. (Continuity theorem) Let X,, be a sequence of random vari-
ables, X a RV. Let Fx, and Fx be their cdf’s. Let My, and Mx be their
moment generating functions. Suppose there is an a > 0 such that Mx, (t)
and Mx(t) exist for |t| < a. Suppose that for |t| < a, Mx, (t) — Mx(t).
Then for all x where F(x) is continuous,

Fx, (z) — F(x)

The central limit theorem only requires that the random variables have
a finite second moment, not that their mgf exist. To proof the CLT in this
case we use “characteristic functions” instead of mgf’s.

Definition 4. The characteristic function of a random variable X is
¢x(t) = E[e"™] = Elcos(tX) + isin(tX)]

Since | cos(tX)|, |sin(tX)| < 1, the characteristic function is defined for all t
for any random variable.

For a continuous random variable with density fx(z),

ox(t)= [ e fu(a)da

o0

This is just the Fourier transform of fx(z) For a normal random variable
the computation of the characteristic function is almost identical to that of
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the mfg. We find for a standard normal random variable X that ¢z(t) =

exp(—t%/2).
If X and Y are independent, then

Ox1v(t) = ox(t) + oy (t)

We also note that for a constant ¢, the characteristic function of c¢X is

bex (t) = Px(ct).

Now let X have the Cauchy distribution. An exercise in contour integra-

tion shows
1 e’} 1xt
dx(t) = —/ ————

T ) o x?+1

Now let X,, be an iid sequence of Cauchy random variables. So if we let .S,
be their sum, then

¢s, (1) = exp —nlt|

This is the characteristic function of n times a Cauchy distribution. So
1
2
has a Cauchy random variable. Note that the CLT would say
Ly
Vi

converges to a normal. So instead of the CLT theorem we see that if we
rescale differently then in the limit we get a Cauchy distributions. There are
random variables other than Cauchy for which we also get convergence to
the Cauchy distribution.

8.6 Proof of strong law of large numbers

Borel Cantelli
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