
1 Moment generating functions - supplement

to chap 1

The moment generating function (mgf) of a random variable X is

MX(t) = E[etX ] (1)

For most random variables this will exist at least for t in some interval con-
taining the origin. The mgf is a computational tool. By taking derivatives
and evaluating them at t = 0 you can compute moments:

M ′(0) = E[X], M ′′(0) = E[X2], M (k)(0) = E[Xk] (2)

If Y = aX + b for constants a and b, then

MY (t) = ebt MX(at) (3)

If X1, X2, · · ·Xn are independent and Y = X1 + · · ·Xn, then

MY (t) = MX1(t)MX2(t) · · ·MXn(t) (4)

1.1 Discrete distributions

Bernouilli distribution: This is a random variable X that only equals 0
and 1. The parameter p is P (X = 1).

E[X] = p, V ar(X) = p(1− p), M(t) = (1− p) + pet (5)

Binomial distribution: Flip a coin n times, X is the number of heads, p
is the probability of heads.

f(x|n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, · · · , n (6)

E[X] = np, V ar(X) = np(1− p), M(t) = [(1− p) + pet]n (7)

Note that the binomial random variable is the sum of n independent Bernoulli
random variables with the same p.
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Poisson: For λ > 0,

f(x|λ) =
e−λλx

x!
, x = 0, 1, 2, · · · (8)

E[X] = λ, V ar(X) = λ, M(t) = exp(λ(et − 1)) (9)

Geometric: Flip a coin until we get heads for the first time. X is the
number of tails we get before this first heads.

f(x|p) = p(1− p)x, x = 0, 1, 2, · · · (10)

E[X] =
1− p

p
, V ar(X) =

1− p

p2
, M(t) =

p

1− (1− p)et
(11)

Warning: some people define X to be the total number of flips including
the one that gave you the first head.

Negative binomial: Flip a coin until we get heads for the kth time. X is
the number of flips including the flip on which the kth head happened.

E[X] =
k(1− p)

p
, V ar(X) =

k(1− p)

p2
, M(t) =

(
p

1− (1− p)et

)k

(12)

Warning: some people define X to be the total number of flips including
the ones that gave you the first k heads.

1.2 Continuous distributions

Normal: For σ > 0 and any µ,

f(x|µ, σ) =
1

σ
√

2π
exp

(−(x− µ)2

2σ2

)
, −∞ < x < ∞ (13)

E[X] = µ, V ar(X) = σ2, M(t) = exp(µt +
1

2
σ2 t2) (14)

Exponential: For λ > 0,

f(x|λ) = λe−λx, x ≥ 0 (15)

E[X] =
1

λ
, V ar(X) =

1

λ2
, M(t) =

λ

λ− t
(16)
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Gamma: For α, β > 0,

f(x|α, β) =
βα

Γ(α)
xα−1 e−βx, x ≥ 0 (17)

If α is an integer, Γ(α) = (α− 1)!.

E[X] =
α

β
, V ar(X) =

α

β2
, M(t) =

(
β

β − t

)α

(18)

This shows that the sum of k independent exponential random variables with
parameter λ has a gamma distribution with α = k and β = λ.
Warning: Some people parameterize the gamma distribution differently.
Their β is my 1/β.

Chi-squared or χ2 : Let Z1, Z2, · · · , Zn be independent standard normal
RV’s. Let

X =
n∑

i=1

Z2
i (19)

Then X has the chi-squared distribution with n degrees of freedom. It can
be shown that this is the gamma distribution with α = n/2 and β = 1/2. So
the pdf is

f(x|n) =
1

2n/2Γ(n/2)
xn/2−1 e−x/2, x ≥ 0 (20)

E[X] = n, V ar(X) = 2n, M(t) =

(
1

1− 2t

)n/2

(21)

Note that the sum of independent chi-squared is again with chi-squared with
the number of degree of freedom adding.

Student’s t: Let U and V be independent random variables. U has a
standard normal distribution, and V has a chi-square distribution with n
degrees of freedom. Let

T =
U√
V/n

(22)

The distribution of T is called Student’s t distribution (or just the t distri-
bution) with n degrees of freedom. The pdf is

f(x|n) =
Γ

(
n+1

2

)

(nπ)1/2Γ
(

n
2

)
(

1 +
x2

n

)−(n+1)/2

, −∞ < x < ∞ (23)

The mgf is not defined.
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