
1 Least squares fits

This section has no probability in it. There are no random variables. We are
given n points (xi, yi) and want to find the equation of the line that best fits
them. We take the equation of the line to be

y = α + βx (1)

We have to decide what “best fit” means. For each point the value of the
line at xi will be α + βxi. So the vertical distance between the line and the
actual data point (xi, yi) is |yi − α − βxi|. We take “best fit” to mean the
choice of α and β that minimizes the sum of the squares of these errors:

Q =
n∑

i=1

[yi − α− βxi]
2 (2)

To find the minimum we find the critical points: take the partial derivatives
of this with respect to α and β and set them to zero.

0 =
∂Q

∂α
= 2

n∑
i=1

[yi − α− βxi](−1)

0 =
∂Q

∂β
= 2

n∑
i=1

[yi − α− βxi](−xi)

(3)

Define

X =
1

n

n∑
i=1

xi

Y =
1

n

n∑
i=1

yi

X2 =
1

n

n∑
i=1

x2
i

XY =
1

n

n∑
i=1

xiyi

(4)
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Then solving the above two equation for α and β gives (after some algebra)

β =
XY −XY

X2 − (X)2

α = Y − βX (5)

2 Simple linear regression

Suppose we have some experiment for which we can set the value of an input
x and them measure some output y. For example, we put a metal rod in an
oven. x is the temperature we set the oven to and y is the length of the rod.
(Metals usually expand when heated.) We believe that y is a linear function
of x. However, because of experimental error (or other sources of noise) the
measured value of y is not a linear function of x.

We model this situation by something called a “simple linear model”. Let
xi, i = 1, 2, · · · , n be the values of x used in our experiment. We let

Yi = α + βxi + εi (6)

Where the εi are iid normal random variables with mean zero and common
variance σ2. The three parameters α, β, σ are unknown. We are given n
data points (xi, Yi), and our job is to estimate the three parameters or test
hypotheses involving them. Keep in mind that in this model the xi are non
random, the Yi are random.

The above equation implies the Yi will be independent normal random
variables with mean α + βxi and variance σ2. Thus the joint density of the
Yi is

f(y1, y2, · · · , yn|α, β, σ) =
1

(2πσ2)n/2
exp[− 1

2σ2

n∑
i=1

(yi − α− βxi)
2] (7)

We will do maximimum likelihood estimation. So given y1, · · · , yn (and
x1, · · · , xn), we want to maximize the likelihood function as a function of
α, β, σ. The natural thing to do is to take the partial derivatives with re-
spect to each of the three parameters, set them all to zero and do a bunch of
algebra. We can save some algebra by the following approach. First we think
of σ as fixed and maximize f over α and β. This is equivalent to minimizing

n∑
i=1

[yi − α− βxi]
2 (8)
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But this is exactly the problem we solved in the last section. So the optimal α
and β are given by equation 5. Note that they do not depend on σ. Denoting
the above quantity by Q we must now maximize

1

(2πσ2)n/2
exp[− 1

2σ2
Q] (9)

It is a bit easier to minimize the log of this likelihood function.

∂

∂σ
ln f =

∂

∂σ

(
−n ln σ − 1

2σ2
Q

)
=
−n

σ
+

1

σ3
Q (10)

Setting this to zero leads to

σ2 =
1

n
Q (11)

We have found the maximum likelihood estimators. They are

β̂ =
XY −XY

X2 − (X)2

α̂ = Y − β̂X

σ̂2 =
1

n

n∑
i=1

(Yi − α̂− β̂xi)
2 (12)

X,Y , ... are defined as in the previous section with yi replaced by Yi.
The estimators are random variables since then involve the random vari-

ables Yi. An important question is how good are they? In particular, are
they unbiased and what is their variance.

Each of the estimators α and β can be written as linear combinations of
the Yi.

β̂ =
n∑

j=1

cjYj (13)

It is convenient to define

s2
X =

n∑
i=1

(xi −X)2 = n[X2 − (X)2] (14)

(The last equality is easily checked with a little algebra.) Then some algebra
shows

cj =
xj −X

s2
X

(15)
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Thus

E[β̂] =
n∑

j=1

cjE[Yj] =
n∑

j=1

cj(α + βxi) = β (16)

The last equality follows from

n∑
j=1

cj = 0,
n∑

j=1

cjxj = 1 (17)

Since the Yj are independent, we also get the variance:

var(β̂) =
n∑

j=1

c2
j var(Yj) =

n∑
j=1

c2
j σ2 =

σ2

s2
X

(18)

Similarly, we write α as a linear combination of the Yi.

α̂ =
n∑

j=1

djYj (19)

where some algebra shows

dj =
X2 − xjX

s2
X

(20)

Thus

E[α̂] =
n∑

j=1

djE[Yj] =
n∑

j=1

dj(α + βxi) = α (21)

The last equality follows from

n∑
j=1

dj =
nX2 − n(X)

s2
X

= 1

n∑
j=1

cjxj = 0 (22)

Since the Yj are independent, we also get the variance:

var(α̂) =
n∑

j=1

d2
j var(Yj) =

n∑
j=1

d2
j σ2 =

σ2 X2

s2
X

(23)
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3 Joint distribution of the estimators

The goal of this section is to find the joint distribution of the estimators
α̂, β̂ and σ̂2. The key ingredient is the following theorem. Recall that an
n by n matrix A is orthogonal if AtA = I where At is the transpose of A.
Orthogonal matrices preserve lengths of vectors: ||Ax|| = ||x|| for x ∈ Rn

if A is orthogonal. A matrix is orthogonal if and only if its rows form an
orthonormal basis of Rn. A matrix is orthogonal if and only if its columns
form an orthonormal basis of Rn.

Theorem 1. Let Y1, Y2, · · · , Yn be independent, normal random variables
with the same variance σ2. (Their means are arbitrary.) Let A be an n
by n orthogonal matrix. Let Z = AY and let Zi be the components of Z, so
Z = (Z1, Z2, · · · , Zn). Then Z1, Z2, · · · , Zn are independent normal random
variables, each with variance σ2.

We apply this theorem to our random variables Yi and the following
orthogonal matrix A. The first row of A is

a1j =
1√
n

, j = 1, 2, · · · , n

The second row is

a2j =
xj −X

sX

, j = 1, 2, · · · , n

where sX is defined as before:

s2
X =

n∑
i=1

(xi −X)2

It is easy to check that these two rows form an orthonormal set. (They are
orthogonal and each has norm equal to one.) By the Gram-Schmidt process
we can find n− 2 more vectors which together with the first two rows form
an orthonormal basis. We use these n − 2 vectors as the remaining rows.
This gives us an orthogonal matrix. As in the theorem we define Z = AY .

We will express the estimators for α, β, σ2 in terms of the Zi. We have

Z1 =
n∑

j=1

1√
n

Yj =
√

nY
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Z2 =
1

sX

n∑
j=1

(xj −X)Yj =
n

sX

(XY −XY )

Thus we have

β̂ =
XY −XY

s2
X/n

=
1

sX

Z2

And we have

α̂ = Y − βX =
1√
n

Z1 − X

sX

Z2

(24)

Since A is orthogonal,

n∑
i=1

Y 2
i =

n∑
i=1

Z2
i

A fair amount of algebra shows that if we let

S2 =
n∑

i=1

(Yi − α̂− β̂xi)
2 (25)

then

S2 =
n∑

i=3

Z2
i (26)

Note that the sum starts at i = 3. The Zi are independent normal random
variables, each with variance σ2. It is not hard to show that the mean of Zi

is zero if i ≥ 3. So S2/σ2 has a χ2 distribution with n−2 degrees of freedom.
In particular, the mean of S2 is (n− 2)σ2.

The maximum likelihood estimator for σ2 is S2/n. Thus we have now
found its mean:

E[σ̂2] =
n− 2

n
σ2 (27)

So the maximum likelihood estimator is biased. The corresponding unbiased
estimator is S2/(n − 2). The estimators α̂, β̂ are linear combinations of Z1

and Z2, while σ̂2 only depends on Zi for i ≥ 3. Thus α̂ and β̂ are independent
of σ̂2. We summarize our results in the following theorem
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Theorem 2. α̂ and β̂ have a bivariate normal distribution with

E[α̂] = α, E[β̂] = β

var(α̂) =
X2σ2

s2
X

, var(β̂) =
σ2

s2
X

Cov(α̂, β̂) = E[α̂β̂]− E[α̂]E[β̂] = −Xσ2

s2
X

(28)

S2 (and hence σ̂2) is independent of α̂, β̂. S2/σ2 has a χ2 distribution with
n− 2 degrees of freedom.

We can use the theorem to do hypothesis testing involving α and β and
to find confidence intervals for them.

We start with hypothesis testing involving β. Consider

H0 : β = β∗

H1 : β 6= β∗

(29)

where β∗ is a constant. We have taken the alternative to be two sided, but
the case of a one-sided alternative is similar. If the null hypothesis is true,
then by the theorem,

β̂ − β∗

σ/sX

=
β̂ − β

σ/sX

= sX
β̂ − β

σ
(30)

has a standard normal distribution. Since σ is unknown, we must estimate
it. So we define the statistic to be

T = sX
β̂ − β∗√

S2/(n− 2)
(31)

Note that we have used the unbiased estimator of σ2. We can write the above
as

U√
V/(n− 2)

(32)
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where

U =
β̂ − β∗

σ/sX

(33)

and

V =
S2

σ2

(34)

This shows that T has a student-t distribution with n−2 degrees of freedom.
Now given a significance level ε, we choose c so that

P (|T | ≥ c) = ε (35)

Then the test is to reject the null hypothesis if |T | ≥ c.
For confidence intervals, suppose we want a 95% confidence interval. Then

we choose a (using tables or software) so that

P (|T | ≤ a) = 0.95

(36)

Then the confidence interval is

[β̂ − a

sX

√
S2/(n− 2), β̂ +

a

sX

√
S2/(n− 2)]

(37)

For hypothesis testing on α, consider

H0 : α = α∗

H1 : α 6= α∗

(38)

Taking into account the variance of α̂, we see that the approriate statistic is
now

T = sX
α̂− α∗√

X2S2/(n− 2)
(39)

It has a student’s t distribution with n−2 degrees of freedom. The confidence
interval now has the form

[α̂− a

sX

√
X2S2/(n− 2), α̂ +

a

sX

√
X2S2/(n− 2)]

(40)
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4 General linear regression

The model is now

Yi =
k∑

j=1

Xijβj + εi (41)

where X is a n by k matrix. The βj are k unknown parameters and the εi are
iid normal random variables with mean zero and variance σ2. The matrix X
is sometimes called the design matrix. We assume it has trivial null space,
i.e., the only k-dimensional vector z such that Xz = 0 is z = 0. (This is
equivalent to the columns of X being independent.)

This models includes several interesting special cases. We will consider
one of them (ANOVA) later. For now we point out the following special case.
In the previous section we assumed that y was a linear function of x plus
some “noise.” Now suppose that y is an mth degree polynomial function of
x plus some noise. The coeffecients of the polynomial are unknown. So the
model should be

Yi =
m∑

j=0

βjx
j
i + εi (42)

where i = 1, 2, · · · , n. If we let k = m + 1, let

X =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2

· · ·
1 xn x2

n · · · xm
n


 , (43)

let β be the vector (β0, β1, · · · , βm) and let ε = (ε1, · · · , εn), then Y = Xβ + ε.
So our polynomial regression is a special case of the general linear model.

To find estimators for the unknown parameters βj and σ2 we use the
maximum likelihood estimators. The joint distribution of the Yi is

f(y1, · · · , yn|β, σ) =
1

(2πσ2)n/2
exp[− 1

2σ2
Q] (44)

where

Q =
n∑

i=1

(yi −
k∑

j=1

Xijβj)
2 (45)

Again, it is convenient first fix σ and maximize f over all the βj. This is
equivalent to minimizing Q. This is an interesting linear algebra problem,
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whose solution may be found in the appendix on linear algebra in the book.
Let y denote the n dimensional vector (y1, · · · , yn), β the k dimensional vector
(β1, · · · , βn). Then we can write Q as ||y − Xβ||2. The set of all vectors of
the form Xβ is a subspace of Rn. If we assume that the columns of X are
linearly independent (X has rank k), then the set of vectors of the form Xβ
is a k dimensional subspace of Rn. Minimizing Q is equivalent to finding the
vector in this subspace that is closest to y. A theorem in linear algebra says
this is given by

X tXβ̂ = X ty (46)

The assumption that the rank of X is k implies that the k by k matrix X tX
is invertible, so

β̂ = (X tX)−1 X ty (47)

Finally we minimize the likehood function (with this choice of β) over σ.
This gives the following estimator for σ2:

σ̂2 =
||Y −Xβ̂||2

n
(48)

Since εi has mean 0, the expectation of Yi is

E[Yi] =
k∑

j=1

Xijβj (49)

Or in matrix notation, E[Y ] = Xβ. Thus

E[β̂] = E[(X tX)−1 X tY ] = (X tX)−1 X tE[Y ] = (X tX)−1 X tXβ = β (50)

Thus the estimators of the βj are unbiased.

It turns out that the expected value of ||Y −Xβ̂||2 is (n − k)σ2. So the
maximum likelihood estimator of σ2 is biased. A possible unbiased estimator
is

||Y −Xβ̂||2
n− k

(51)

which is the estimator given in the book (eq. (14.13)).
The estimators β̂ are linear combinations of the independent normal RV’s

Yi. This implies that their joint distribution is a multivariate normal. You
probably haven’t seen this. One property of a multivariate normal distribu-
tion is that any linear combination of the RV’s will have a normal distribu-
tion. In particular, each β̂i has a normal distribution. We have already seen
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that its mean is βi, so if we knew its variance we would known its distribution
completely. The following theorem addresses this. The covariance matrix of
β̂ is the k by k matrix defined by

Cij = cov(β̂i, β̂j) (52)

Theorem 3. The covariance matrix of β̂ is

C = σ2 (X tX)−1 (53)

In particular, the variance of β̂i is σ2 times the ith diagonal entry of the
matrix (X tX)−1.

Define

S2 = ||Y −Xβ̂||2 =
n∑

i=1

(Yi −
k∑

j=1

Xijβ̂j)
2 (54)

Recall that the maximum likelihood estimator of σ2 was S2/n. It can be
shown that S2 is independent of all the β̂i and furthermore that S2/σ2 has a
χ2 distribution with n− k degrees of freedom.

We can now test hypotheses that involve a single βi and compute confi-
dence intervals for a single βi. Fix an index i and consider the null hypothesis
H0 : βi = β∗ where β∗ is a constant. If the null hypothesis is true, then

β̂i − β∗i√
var(β̂i)

(55)

has a standard normal distribution. Let d2
i be the ith diagonal entry in

(X tX)−1. So the variance of β̂i is d2
i σ

2, and the above becomes

β̂i − β∗i
diσ

(56)

We do not know σ, so we replace it by the unbiased estimator, S/
√

n− k.
So we use the statistic

T =
(β̂i − β∗i )

√
n− k

diS
(57)

As before we can rewrite this as

T =
(β̂i − β∗i )

diσ

σ
√

n− k

S
(58)

to see it has a student-t distribution with n−k degrees of freedom. Hypothesis
testing and confidence intervals then go in the usual way.
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5 The F Distribution

Let Y and W be independent random variables such that Y has a χ2 dis-
tribution with m degrees of freedom and W has a χ2 distribution with n
degrees of freedom. (m and n are positive integers.) Define

X =
Y/m

W/n
(59)

Then the distribution of X is called the F distribution with m and n degrees
of freedom. It is possible to explicitly compute the p.d.f. of this distribution,
but we will not do so.

Our main interest in the F distribution in the application in the next
section. Here we will give a simple application.

Suppose we have two normal populations, one with mean µ1 and variance
σ2

1 and the other with mean µ2 and variance σ2
2. All four of these parameters

are unknown. We have a random sample X1, · · · , Xm from population 1
and a random sample Y1, · · · , Yn from population 2. The two samples are
independent. We want to test the hypotheses:

H0 : σ2
1 ≤ σ2

2

H1 : σ2
1 > σ2

2

(60)

Define

S2
X =

m∑
i=1

(Xi −Xm), S2
Y =

n∑
i=1

(Yi − Yn),

(61)

where Xm is the sample mean for X1, · · · , Xm and Yn is the sample mean for
Y1, · · · , Yn. Let

T =
S2

X/(m− 1)

S2
Y /(n− 1)

(62)

Then the test is that we should reject H0 if T is large. It can be shown that
if σ2

1 = σ2
2, then T has an F distribution with m − 1 and n − 1 degrees of

freedom. If we want a significance level of α, then we choose c so that for
this distribution, P (T > c) = α. Then we reject H0 if T > c.
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6 Analysis of Variance (ANOVA)

We consider a problem known as the “one way layout.” There are p different
populations, each has a possibly different mean µi, but they all have the
same variance σ2. For i = 1, 2, · · · , p we have a random sample with ni

observations from the ith population. We denote it by Yi1, Yi2, · · · , Yini
. We

let n =
∑p

i=1 ni be the total number of observations. We want to test the
hypothesis that the means of the populations are all the same.

Example
The model is

Yij = µi + εij, i = 1, · · · , p, j = 1, · · · , ni (63)

where the εij are iid normal random variables with mean zero and variance
σ2. This is a special case of the general linear model. Here the unknown
parameters are the µi and σ2.

We define the vectors

Y = (Y11, · · · , Y1n1 , Y21, · · · , Y2n2 , · · · , Yp1, · · · , Ypnp) (64)

ε = (ε11, · · · , ε1n1 , ε21, · · · , ε2n2 , · · · , εp1, · · · , εpnp) (65)

µ = (µ1, · · · , µp) (66)

The design matrix X, which is n by p, contains only 1’s and 0’s, with
exactly one 1 in each row. Each column in the matrix corresponds to one of
the populations. The first n1 rows have a 1 in the first column. The next n2

rows have a 1 in the second column. The next n3 rows have a 1 in the third
column. And so on. So the model in matrix notation is Y = Xµ + ε.

We can use the results for the general linear model to find the maximum
likelihood estimators for the µi and their variances. We need to compute
(X tX)−1. A little thought shows that X tX is just a diagonal matrix with
n1, n2, · · · , np along the diagonal. So its inverse is the diagonal matrix with
1/n1, 1/n2, · · · , 1/np along the diagonal. And we see that the ith entry of
X tY is just the sum of the observations in the ith sample. We define Yi+ to
be the mean of the sample from population i. So

Yi+ =
1

ni

ni∑
j=1

Yij (67)
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Thus eq. (47) says that the maximum likelihood estimator for µi is just Yi+.
And by the theorem in the previous section, the variance of β̂ is σ2 times
the ith diagonal entry of (X t)−1, i.e., it is σ2/ni. These results are what you
would expect if you had never seen the general linear model. If all we want
to study is the parameter µi for population i, then we can forget about the
samples from the other populations and just use the sample from population
i. Then we are back to a problem we considered when we first did estimation
and hypothesis testing.

The maximum likelihood estimator of σ2 is

σ̂2 =
1

n

p∑
i=1

ni∑
j=1

(Yij − Yi+)2 (68)

We now turn to the problem we are really interested in, testing the hy-
potheses:

H0 : µ1 = µ2 = · · ·µp

H1 : H0 not true

(69)

We define Y++ to be the average of all the random samples:

Y++ =
1

n

p∑
i=1

ni∑
j=1

Yij =
1

n

p∑
i=1

niYi+ (70)

We define

S2
tot =

p∑
i=1

ni∑
j=1

(Yij − Y++)2 (71)

The subscript tot stands for total. If the null hypothesis is true, then S2
tot/n

would be the MLE of σ2.
Define

S2
resid =

p∑
i=1

ni∑
j=1

(Yij − Yi+)2 (72)

S2
betw =

p∑
i=1

ni(Yi+ − Y++)2 (73)
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Here resid and betw stand for residual and between. Some algebra shows
that

S2
tot = S2

resid + S2
betw (74)

Since the p random samples are independent, S2
resid is the sum of p indepen-

dent random variables, each of which has a χ2 distribution with ni−1 degrees
of freedom. Hence S2

resid has a χ2 distribution with
∑p

i=1(ni − 1) = n − p
degrees of freedom. Furthermore, since S2

betw only depends on the random
samples through their sample means, S2

betw is independent of S2
resid. It can

also be shown that S2
betw has χ2 distribution with p − 1 degrees of freedom.

Thus we have partitioned the total variation of all the samples the sum of two
independent terms - one is the sum of the variations of each sample around
its mean and the other reflects how much these sample means vary around
the mean of all the samples together.

Now we define the statistic we will use to test our hypotheses:

U2 =
S2

betw/(p− 1)

S2
resid/(n− p)

(75)

If the null hypothesis H0 is true, then U2 has a F distribution with p−1 and
n− p degrees of freedom. A large value of U2 indicates the null hypothesis is
not true. Given a significance level α, we pick c so that for the F distribution
with p− 1 and n− p degrees of freedom, P (U2 > c) = α. Then the test is to
reject the null hypothesis if U2 > c. The value of c can be found in tables,
or better yet from software.
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