Elements of R

1 Arithmetic

The expressions $+,-, *, /$ are used in the usual way. Exponents are indicated by expressions like $3 \wedge 4$, which evaluates to 81 . There are various common functions that work like sqrt(9) and abs(-4).

2 Logic

Equality is expressed by $==$. Lack of equality is $!=$. The inequalities are $<,<=$ and $>,>=$. The logical operations and, or, not are written $\&, \mid,!$.

3 Vectors

A vector can be generated by $\mathrm{c}(5,2,4)$. This combines the numbers $5,2,4$ to form a single vector. The vector $2: 5$ is the same as the vector $c(2,3,4,5)$. The vector $\operatorname{seq}(2,5,0.1)$ is the same as the vector 20:50/10.

4 Assignment

A variable is assigned a value by the command
variable <- expression
Thus, for instance
$\mathrm{x}<-\mathrm{c}(5,2,4)$
makes x stand for the corresponding vector. In this context we can say x "becomes" c($5,2,4$).

5 Vector operations

If x is a vector, then length (x) tells how many components it has, and $\mathrm{x}[3]$ selects the third component.

The sum of the components is $\operatorname{sum}(x)$, and the mean is mean (x). This is the same as $\operatorname{sum}(\mathrm{x}) / \operatorname{length}(\mathrm{x})$. The variance $\operatorname{var}(\mathrm{x})$ is defined with the $n-1$ factor in the denominator. The standard deviation is $\operatorname{sd}(\mathrm{x})$.

The largest and smallest elements of a vector are given by $\max (x)$ and $\min (\mathrm{x})$. The expression sort(x) gives a vector with the same entries, but sorted in increasing order. The expression median(x) gives the same result as quantile($\mathrm{x}, 0.5$). The quartiles can be obtained by quantile($\mathrm{x}, 0.25,0.5,0.75$)

With two vectors of the same length one can compute the correlation coefficient $\operatorname{cor}(\mathrm{x}, \mathrm{y})$. The two vectors can be plotted by $\operatorname{plot}(\mathrm{x}, \mathrm{y})$.

6 Functions

A function is denoted by giving inputs and an expression for an output. Thus function $(x) x *(1-x)$
denotes a function that takes input x and gives output $x(1-x)$. If we wanted
to give this function a name, such as h , then we would make the assignment
$\mathrm{h}<-$ function $(x) x *(1-x)$.
Thus $\mathrm{h}(2)$ would return -2 .

7 Probability distributions

For each probability distribution there are three functions and one random sample generator. Thus for the normal distribution these are:
dnorm(x, mean,sd) density: computes density as a function of x
pnorm(q,mean,sd) distribution: computes probability as a function of quantile q
qnorm(p, mean,sd) inverse distribution: computes quantile as a function of probability p
rnorm(n,mean,sd) generates random sample of size n
Similarly, for the binomial distribution there are the functions dbinom(x,size,prob), pbinom(q,size,prob), qbinom(p,size,prob), and rbinom(n,size,prob).

Here are some of the probability distributions that are commonly used. The
following listing has the p version of the function, but the d, p, q, and r versions all exist.
pnorm(q,mean,sd) normal distribution
pgamma(q,shape,rate) Gamma distribution
$\operatorname{pexp}(\mathrm{q}$, rate $)$ exponential distribution: same as pgamma(x,1,rate)
pchisq(q, df) chi square distribution: same as pgamma($\mathrm{x}, \mathrm{df} / 2,1 / 2$)
$\mathrm{pt}(\mathrm{q}, \mathrm{df}) \mathrm{t}$ distribution
$\mathrm{pf}(\mathrm{q}, \mathrm{df} 1, \mathrm{df} 2) \mathrm{F}$ distribution
pbeta(q,shape1,shape2) Beta distribution
punif(q,min,max) uniform distribution
pcauchy(q,location,scale) Cauchy distribution
pbinom(q,size,prob) binomial distribution
pnbinom(q,size, prob) negative binomial distribution
pgeom(q,prob) geometric distribution: same as pnbinom(q,1,prob)
ppois(q,lambda) Poisson distribution

8 Example: Empirical distribution

Take a sample; tabulate the results.
Create a sample:
$\mathrm{x}<-\operatorname{rbinom}(100,8,1 / 2)$
Create a vector:
n <- 0:8
Tabulate the sample:
for (i in 1:9) $n[i]<-\operatorname{sum}[x==i-1]$
Plot the table:
plot(0:8,n)

9 Example: The Bernoulli process

Compare the number of successes up to n with the time of the i th success.
Take an independent Bernoulli sample:
$\mathrm{x}<-\operatorname{rbinom}(100,1,1 / 7)$
Create a vector:
s <-1:100
Find the number of successes in the first n trials:
$\mathrm{h}<-1: 100$
for $(\mathrm{n}$ in 1:100) $\mathrm{s}[\mathrm{n}]<-\operatorname{sum}(\mathrm{x}[\mathrm{h}<=\mathrm{n}])$
Create another vector:
$\mathrm{t}<-1: 100$
Find the time of the i th success:
for (i in $1: 100) \mathrm{t}[\mathrm{i}]<-\min (\mathrm{h}[\mathrm{s}>=\mathrm{i}])$
Extract the useful part of this vector:
$\mathrm{tt}<-\mathrm{t}[1: 13]$

10 File input

To read in a vector:
$\mathrm{x}<-\operatorname{scan}($ "filename.txt")
To read in a list of two vectors:
xy $<-\operatorname{scan}$ ("filename.txt", list $(0,0)$)
To extract the individual vectors:
$\mathrm{x}<-\mathrm{xy}[[1]]$
$y<-x y[[2]]$

