
1 Hypothesis Testing - Uniformly Most Pow-

erful Tests

We give the definition of a uniformly most powerful test in a general setting
which includes one-sided and two-sided tests. We take the null hypothesis to
be

H0 : θ ∈ Ω0

and the alternative to be

H1 : θ ∈ Ω1

We write the power function as Pow(θ, d) to make its dependence on the
decision function explicit.

Definition: A decision function d∗ is a uniformly most powerful (UMP) de-
cision function (or test) at significance level α0 if
(1) Pow(θ, d∗) ≤ α0, ∀θ ∈ Ω0

(2) For every decision function d which satisfies (1), we have Pow(θ, d) ≤
Pow(θ, d∗), ∀θ ∈ Ω1.

Do UMP tests ever exist? If the alternative hypothesis is one-sided then
they do for certain distributions and statistics. We proceed by defining the
needed property on the population distribution and the statistic.

Definition: Let T = t(X1, X2, · · · , Xn) be a statistic. Let f(x1, x2, · · · , xn|θ)
be the joint density of the random sample. We say that f(x1, x2, · · · , xn|θ)
has a monotone likelihood ratio in the statistic T if for all θ1 < θ2 the ratio

f(x1, · · · , xn|θ2)

f(x1, · · · , xn|θ1)

depends on x1, · · · , xn only through t(x1, · · · , xn) and the ratio is an increasing
function of t(x1, · · · , xn).

Example: Consider a Bernoulli distribution for the population, i.e., we are
looking at a population proportion. So each Xi = 0, 1 and p = P (Xi = 1).
The joint density is

f(x1, · · · , xn|p) = pnx̄(1− p)n−nx̄
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where

x̄ =
1

n

n∑
i=1

xi

Let p1 < p2. We have

f(x1, · · · , xn|p2)

f(x1, · · · , xn|p1)
=

[
p2(1− p1)

p1(1− p2)

]nx̄ [
1− p2

1− p1

]n

So the ratio depends on the sample only through the sample mean x̄ and it
is an increasing function of x̄. (It is an easy algebra exercise to check that if
p2 > p1 then p2(1− p1)/(p1(1− p2)) > 1.)

Example: Now consider a normal population with unknown mean µ and
known variance σ2. So the joint density is

f(x1, · · · , xn|µ) =
1

(2π)n/2σn
exp(− 1

σ2

n∑
i=1

(xi − µ)2)

Now let µ1 < µ2. A little algebra shows

f(x1, · · · , xn|µ2)

f(x1, · · · , xn|µ1)
= exp(

n

σ2
x̄(µ2 − µ1) +

(µ2
1 − µ2

2)n

2σ2
)

So the ratio depends on x1, x2, · · · , xn only through x̄, and the ratio is an
increasing function of x̄.

Theorem 1. Suppose f(x1, · · · , xn|θ) has a monotone likelihood ratio in the
statistic T = t(X1, · · · , Xn). Consider hypothesis testing with alternative
hypothesis Ha : θ > θ1, and null hypothesis H0 : θ ≤ θ0 or H0 : θ = θ0. Let
α0, c be constants such that P (T ≥ c) = α0. Then the test that rejects the
null hypothesis if T ≥ c is a UMP test at significance level α0.

Example: We continue the example of a normal population with known
variance and unknown mean. We saw that the likelihood ratio is monotone
in the sample mean. So if we reject the null hypothesis when X̄n ≥ c, this
will be a UMP test with significance level α = P (X̄n ≥ c|µ0). Given a desired
significance level α, we choose c so this equation holds. Then the theorem
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tells us we have a UMP test. So for every µ > µ0, our test makes Pow(µ) as
large as possible.

Example: We continue the example of a Bernoulli distribution for the pop-
ulation (population proportion). To be concrete, suppose the null hypothesis
is p ≤ 0.1 and the alternative is p > 0.1. We have a random sample of size
n = 20. Let X̄ be the sample proportion. By what we’ve already done, the
test that reject the null hypothesis when X̄ ≥ c will be a UMP test. We
want to choose c so that P (X̄ ≥ c) = α0. However, X̄ is a discrete RV (it
can only be 0/20, 1/20, 2/20, · · · , 19/20, 1), so this is not possible. Suppose
we want a significance level of 0.005 Using your favorite software (or a table
of the binomial distibution) we find that P (x̄ ≥ 6/20|p = 0.1) = 0.0113 and
P (x̄ ≥ 7/20|p = 0.1) = 0.0024. So we must take c = 7/20. Then the test
that rejects the null if x̄ ≥ 7/20 is a UMP test at significance level 0.005.

What about two-sided alternatives? It can be shown that there is no
UMP test in this setting.
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