Math 520a - Final take home exam - solutions

1. Let f(z) be entire. Prove that f has finite order if and only if f' has finite order and that when they have finite order their orders are the same.

Solution: Suppose that f satisfies

$$|f(z)| \le A \exp(B|z|^{\sigma})$$

By the Cauchy integral formula,

$$f'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w^2}, dw$$

where we take γ to be a circle of radius 1 centered at z. On this contour, $|f(w)| \leq A \exp(B(|z|+1)^{\sigma})$ and $|w| \geq |z| - 1$. So

$$|f'(z)| \le A \frac{\exp(B(|z|+1)^{\sigma})}{(|z|-1)^2} \le A' \exp(B'|z|^{\sigma})$$

for some constants A', B', with the same σ as in the bound on f. It follows that if f has order ρ , then f' has order less than or equal to ρ .

Now suppose f' satisfies

$$|f'(z)| \le A \exp(B|z|^{\sigma})$$

We have

$$f(z) = f(0) + \int_0^z f'(w) \, dw$$

 So

$$|f(z)| \le |f(0)| + |z|A \exp(B|z|^{\sigma})$$

For any $\epsilon > 0$ there are constants A', B' such that the above is

$$\leq A' \exp(B'|z|^{\sigma+\epsilon})$$

It follows that if f' has order ρ , then f has order less than or equal to ρ .

2. Consider the entire function $1/\Gamma(z)$.

(a) Show it does not satisfy

$$|\frac{1}{\Gamma(z)}| \le A \exp(B|z|)$$

for any constants A, B. Hint: look at the points -n - 1/2 where n is a positive integer.

Solution: We showed in class that

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

Take z = -n - 1/2. Then $\sin(\pi(-n - 1/2)) = \pm 1$. So

$$\left|\frac{1}{\Gamma(-n-1/2)}\right| = \frac{1}{\pi} |\Gamma(1-(-n-1/2))| = \frac{1}{\pi} |\Gamma(n+3/2)||$$
$$= \frac{1}{\pi} (n+1/2)(n-1/2)\cdots 3/2 |\Gamma(1/2)|| \ge \frac{n!}{\pi} |\Gamma(1/2)|| = \frac{n!}{\sqrt{\pi}}$$

We have |z| = n + 1/2, and for any constants A, B, n! is eventually greater than $A \exp(B(n + 1/2))$.

(b) Show there is no entire function satisfying a bound of the above form with simple zeros at $0, -1, -2, -3, \cdots$ and no other zeroes.

Solution: Let f(z) be such a function. Then it has order less than or equal to 1. By the Hadamard factorization theorem,

$$f(z) = \exp(az+b) \prod_{n=1}^{\infty} E_1(-z/n)$$

Recall that $1/\Gamma(z)$ is also of this form with $a = \gamma$ and b = 0. So $1/\Gamma(z) = \exp(\gamma z - az - b)f(z)$. This implies $1/\Gamma(z)$ satisfies a bound of the form $A \exp(B|z|)$ and we know from part (a) that it does not.

3. Suppose there is an entire function f(z) and a polynomial p(z) such that $p(f(z)) = e^z$ for all z. Prove that p(z) can only have one root.

Solution: Since e^z is never zero, f(z) cannot equal a root of p(z). So $f(\mathbb{C})$ cannot contain any of the roots. By the little Picard theorem, $f(\mathbb{C})$ is either \mathbb{C} or \mathbb{C} minus a single point. So there can only be one root.

4. Prove that for all $z \in \mathbb{C}$

$$\cos(\frac{\pi z}{2}) = \prod_{n=0}^{\infty} \left[1 - \frac{z^2}{(2n+1)^2}\right]$$

Solution: $\cos(\frac{\pi z}{2})$ is an entire function and since $|\cos(\frac{\pi z}{2})| \leq \exp(\pi |z|/2)$, it has finite order with order ≤ 1 . It has zeroes at 2n + 1 where *n* is an integer. We can also label the zeroes as $\pm(2n + 1)$ with $n = 0, 1, 2, \cdots$. So the Hadamard factorization theorem says

$$\cos(\frac{\pi z}{2}) = e^{az+b} \prod_{n=0}^{\infty} \left[E_1(\frac{z}{(2n+1)}) E_1(-\frac{z}{(2n+1)}) \right]$$

(The product converges absolutely, so we can order it any way we want.) Since

$$[E_1(\frac{z}{(2n+1)})E_1(-\frac{z}{(2n+1)})] = (1 - \frac{z}{2n+1})\exp(\frac{z}{2n+1})(1 + \frac{z}{(2n+1)})\exp(-\frac{z}{2n+1}) = (1 - \frac{z^2}{(2n+1)^2})$$

to finish the proof we need to show a = 0, b = 0. Evaluating at z = 0 shows $e^b = 1$. The evenness of cos and of the infinite product shows a = 0.

5. (a) Prove that for R < 1 there is a constant c(R) such for all complex a with |a| < 1 - R and all f which are analytic on the unit disc \mathbb{D} , we have

$$|f(a)| \le c(R) \int_0^{2\pi} \int_0^R |f(a+re^{i\theta})| \, r dr d\theta$$

So

Solution: Since |a| + R < 1, if $r \leq R$, then the circle of radius r centered at a is contained in \mathbb{D} . By Cauchy's integral formula

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z} dz$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{i\theta}) d\theta$$

$$|f(a)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(a+re^{i\theta})| d\theta$$

Multiply both sides by r and integrate from 0 to R.

$$|f(a)| \int_0^R r \, dr \le \frac{1}{2\pi} \int_0^R \int_0^{2\pi} |f(a + re^{i\theta})| r \, d\theta dr$$

This proves (a) with $c(R) = \frac{2}{R^2 \pi}$.

(b) Let f_n be analytic on \mathbb{D} and f continuous on \mathbb{D} . Suppose that f_n converges to f in $L^1(\mathbb{D})$ meaning that

$$\int_0^{2\pi} \int_0^1 |f_n(re^{i\theta}) - f(re^{i\theta})|^2 r dr d\theta \to 0$$

Prove that f is analytic.

Solution: It suffice to show that f_n converges to f uniformly on the disc $|z| < 1 - \delta$ for all $\delta > 0$. (Uniform limits of analytic functions are analytic.) Fix such an $\delta > 0$. For any constant c, $f_n(z) - c$ is an analytic function of z and so part (a) implies that for any for $a \in D_{1-\delta}(0)$ and any r such that $r < \delta/2$,

$$|f_n(a) - c| \le c(r) \int_0^{2\pi} \int_0^r |f_n(a + re^{i\theta}) - c| r dr d\theta$$

Take c = f(a) and we have

$$|f_n(a) - f(a)| \le c(r) \int_0^{2\pi} \int_0^r |f_n(a + re^{i\theta}) - f(a)| r dr d\theta$$

By triangle inequality this is

$$\leq c(r) \int_0^{2\pi} \int_0^r |f_n(a+re^{i\theta}) - f(a+re^{i\theta})| r dr d\theta$$

+ $c(r) \int_0^{2\pi} \int_0^r |f(a+re^{i\theta}) - f(a)| r dr d\theta$

The first term may be bounded by $c(r)||f_n-f||_1$ since the region of integration is contained inside the unit disc. The second term may be bounded by

$$c(r)\pi r^2 \sup_{z:|z-a|\leq r} |f(z) - f(a)|$$
 (1)

 So

Note that $c(r)\pi r^2 = 2$. And the requirement that $r \leq \delta/2$ means that z in the above sup lies in $D_{1-\delta/2}(0)$. Since f is uniformly continuous on the compact set $\overline{D_{1-\delta/2}(0)}$, the above sup goes to 0 as $r \to 0$. We have to be a bit careful with the order in which we choose things. Let $\epsilon > 0$. Pick r so that (1) is $\langle \epsilon/2 \rangle$. Then pick N so that $c(r)||f_n - f||_1 < \epsilon/2$. Then putting this all together gives $|f_n(a) - f(a)| < \epsilon$ for |z| < R and n > N. This shows f_n converges to f uniformly on $D_r(0)$.

6. Prove the following theorem. We have proved most of the various implications needed in class. For many implications you can just cite a theorem we have proved. For example, to prove (a) implies (e) you can just cite the Riemann mapping theorem. Hint: just what property of Ω did we need in the proof of the Riemann mapping theorem ?

Theorem: The following are equivalent for a connected open set $\Omega \subset \mathbb{C}$.

(a) Ω is simply connected, i.e., every closed curve is homotopic to a point.

(b) For every analytic function f on Ω and every closed contour γ in Ω , we have

$$\int_{\gamma} f(z) \, dz = 0$$

(c) For every analytic function f on Ω there is an analytic function F on Ω such that F' = f.

(d) For every analytic function f on Ω which does not vanish on Ω there is an analytic function g on Ω such that $e^g = f$.

(e) Either $\Omega = \mathbb{C}$ or there is a conformal map from Ω onto the unit disc. Solution:

(a) \Rightarrow (b) : This is Cauchy's theorem.

(b) \Rightarrow (c) : We proved this in class. The idea is that you fix a point z_0 in Ω and define

$$F(z) = \int_{\gamma} f(w) \, dw$$

where γ is any contour from z_0 to z. Property (b) implies that the integral does not depend on the choice of contour. It is then routine to show F' = f. (c) \Rightarrow (d) : We proved this in class. Since f is never zero, f'/f is analytic on Ω . So there is an F with F' = f'/f. The the derivative of $e^{-F}f$ is zero. So $e^{-F} = c$. Let $g(z) = F(z) + \ln(c)$. (d) \Rightarrow (e) : Riemann's theorem says that (a) \Rightarrow (e). But if you look at the proof you see that the only property we needed for Ω was (d) and the existence of square roots of functions on Ω which never vanish which follows immediately from (d).

(e) \Rightarrow (a) : A conformal map is a homeomorphism. So Ω has whatever topological properties the unit disc does. In particular, Ω is simply connected.

We have proved (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e), which proves the five properties are equivalent.