Math 520a - Final take home exam - solutions

1. Let f(z) be entire. Prove that f has finite order if and only if f’ has finite
order and that when they have finite order their orders are the same.

Solution: Suppose that f satisfies
|f(2)] < Aexp(B|z|7)

By the Cauchy integral formula,

where we take v to be a circle of radius 1 centered at z. On this contour,
|f(w)] < Aexp(B(|z| +1)7) and |w| > |z] — 1. So

exp(B(lz] + 1)7)
(2] = 1)?

[f'(2) <A < Alexp(B'|27)

for some constants A’, B’, with the same ¢ as in the bound on f. It follows
that if f has order p, then f’ has order less than or equal to p.
Now suppose [’ satisfies

[f'(2)] < Aexp(B]2|7)
We have
£ = F0)+ [ flwydu
0
So
£ ()] < [f(0)] + |2| Aexp(B]2]?)
For any € > 0 there are constants A’, B’ such that the above is
< A'exp(B'[2]7")
It follows that if f’ has order p, then f has order less than or equal to p.

2. Consider the entire function 1/I'(z).
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(a) Show it does not satisfy

¢é¢3Awmmm

for any constants A, B. Hint: look at the points —n — 1/2 where n is a
positive integer.

Solution: We showed in class that

™

T()[(1 - 2) =

sin(7z)
Take z = —n — 1/2. Then sin(r(—n — 1/2)) = £1. So
1 1 1
S|~ I - (Cn = 12 = e+ 3/2)
n

— %(n—i— 1/2)(n —1/2)---3/2|T(1/2))] > %!\F(l/Q))\ = ﬁ

We have |z| = n + 1/2, and for any constants A, B, n! is eventually greater
than Aexp(B(n+ 1/2)).
(b) Show there is no entire function satisfying a bound of the above form

with simple zeros at 0, —1,—2, —3, - -- and no other zeroes.

Solution: Let f(z) be such a function. Then it has order less than or equal
to 1. By the Hadamard factorization theorem,

f(z) = exp(az +b) [ | Ea(—2/n)
n=1
Recall that 1/I'(z) is also of this form with a = v and b = 0. So 1/I'(z) =

exp(yz — az — b)f(z). This implies 1/T'(z) satisfies a bound of the form
Aexp(B|z|) and we know from part (a) that it does not.

3. Suppose there is an entire function f(z) and a polynomial p(z) such that
p(f(z)) = e* for all z. Prove that p(z) can only have one root.

Solution: Since e* is never zero, f(z) cannot equal a root of p(z). So f(C)
cannot contain any of the roots. By the little Picard theorem, f(C) is either
C or C minus a single point. So there can only be one root.



4. Prove that for all z € C
TZ it z

alod W 1~

COS( 2 ) H) |: (2n+ 1)2:|

Solution: cos(%’) is an entire function and since |cos(%)| < exp(7|z|/2),
it has finite order with order < 1. It has zeroes at 2n + 1 where n is an
integer. We can also label the zeroes as +(2n + 1) with n = 0,1,2,---. So
the Hadamard factorization theorem says

cos( — @ tP H El(_;)]

2n+1 (2n + 1)

(The product converges absolutely, so we can order it any way we want.)
Since

[El(m)E1(—m)]
= U= gp)ewlg )0 gy elg, 1) = - g gy

to finish the proof we need to show a = 0,b = 0. Evaluating at z = 0 shows
e® = 1. The evenness of cos and of the infinite product shows a = 0.

5. (a) Prove that for R < 1 there is a constant ¢(R) such for all complex a
with |a] <1 — R and all f which are analytic on the unit disc D, we have

27 R )
R) / / |f(a+re)| rdrdd
0 0
So

Solution: Since |a| + R < 1, if r < R, then the circle of radius r centered
at a is contained in . By Cauchy’s integral formula
HONS
fla) = .

omi

= / fla+re?)



So

1 21

e i
o |f(a+re?)|do

[f(a)] <

Multiply both sides by r and integrate from 0 to R.

2m
\/ rdr<—// (a+re)|rdodr

This proves (a) with ¢(R) = 7.

(b) Let f,, be analytic on D and f continuous on ID. Suppose that f,, converges
to f in L'(D) meaning that

/% /1 | fu(re®) — f(re®) 2 rdrdd — 0
o Jo

Prove that f is analytic.

Solution: It suffice to show that f,, converges to f uniformly on the disc
|z| <1 =6 for all § > 0. (Uniform limits of analytic functions are analytic.)
Fix such an § > 0. For any constant ¢, f,(z) — ¢ is an analytic function of
z and so part (a) implies that for any for a € D;_5(0) and any r such that
r<0/2,

2T r
|fula) — ] < C(T)/O /0 | fula + ey — c| rdrdf

Take ¢ = f(a) and we have

|fula) = fla)| < c(r / /|fna—|—7"e — f(a)| rdrdf

By triangle inequality this is

2 r
0y _ i0
7")/0 /0 |fula+1e”) — fla+re”)| rdrdd

r) /027r /0” |f(a+re?) — f(a)| rdrdd

The first term may be bounded by ¢(r)|| f.— f||1 since the region of integration
is contained inside the unit disc. The second term may be bounded by

c(rymr® sup |f(2) = f(a)l (1)

zzar
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Note that ¢(r)mr? = 2. And the requirement that » < §/2 means that z
in the above sup lies in Dl,(;/g(O). Since f is uniformly continuous on the
compact set Dq_5/2(0), the above sup goes to 0 as 7 — 0. We have to be a
bit careful with the order in which we choose things. Let ¢ > 0. Pick r so
that (1) is < €/2. Then pick N so that ¢(r)||f, — f|l1 < €¢/2. Then putting
this all together gives |f,,(a) — f(a)| < € for |z| < R and n > N. This shows
fn converges to f uniformly on D,.(0).

6. Prove the following theorem. We have proved most of the various impli-
cations needed in class. For many implications you can just cite a theorem
we have proved. For example, to prove (a) implies (e) you can just cite the
Riemann mapping theorem. Hint: just what property of €2 did we need in
the proof of the Riemann mapping theorem 7

Theorem: The following are equivalent for a connected open set 2 C C.
(a) Q is simply connected, i.e., every closed curve is homotopic to a point.

(b) For every analytic function f on € and every closed contour 7 in Q, we

have
/f(z) dz=0
”

(c) For every analytic function f on € there is an analytic function F' on §)
such that [ = f.

(d) For every analytic function f on €2 which does not vanish on €2 there is
an analytic function g on €2 such that e = f.

(e) Either Q = C or there is a conformal map from € onto the unit disc.
Solution:

(a) = (b) : This is Cauchy’s theorem.

(b) = (c) : We proved this in class. The idea is that you fix a point 2z in €
and define

F(z) = / f(w) dw

where 7 is any contour from 2y to z. Property (b) implies that the integral
does not depend on the choice of contour. It is then routine to show F’' = f.

(c) = (d) : We proved this in class. Since f is never zero, f’/f is analytic
on Q. So there is an F' with F' = f'/f. The the derivative of e~ % f is zero.
So e ' =c. Let g(z) = F(z) + In(c).



(d) = (e) : Riemann’s theorem says that (a) = (e). But if you look at
the proof you see that the only property we needed for Q2 was (d) and the
existence of square roots of functions on 2 which never vanish which follows
immediately from (d).
(e) = (a) : A conformal map is a homeomorphism. So € has whatever
topological properties the unit disc does. In particular, €2 is simply connected.
We have proved (a) = (b) = (¢) = (d) = (e), which proves the five
properties are equivalent.



