Math 520a - Final take home exam - solutions

1. Let $f(z)$ be entire. Prove that f has finite order if and only if f^{\prime} has finite order and that when they have finite order their orders are the same.
Solution: Suppose that f satisfies

$$
|f(z)| \leq A \exp \left(B|z|^{\sigma}\right)
$$

By the Cauchy integral formula,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{2}}, d w
$$

where we take γ to be a circle of radius 1 centered at z. On this contour, $|f(w)| \leq A \exp \left(B(|z|+1)^{\sigma}\right)$ and $|w| \geq|z|-1$. So

$$
\left|f^{\prime}(z)\right| \leq A \frac{\exp \left(B(|z|+1)^{\sigma}\right)}{(|z|-1)^{2}} \leq A^{\prime} \exp \left(B^{\prime}|z|^{\sigma}\right)
$$

for some constants A^{\prime}, B^{\prime}, with the same σ as in the bound on f. It follows that if f has order ρ, then f^{\prime} has order less than or equal to ρ.

Now suppose f^{\prime} satisfies

$$
\left|f^{\prime}(z)\right| \leq A \exp \left(B|z|^{\sigma}\right)
$$

We have

$$
f(z)=f(0)+\int_{0}^{z} f^{\prime}(w) d w
$$

So

$$
|f(z)| \leq|f(0)|+|z| A \exp \left(B|z|^{\sigma}\right)
$$

For any $\epsilon>0$ there are constants A^{\prime}, B^{\prime} such that the above is

$$
\leq A^{\prime} \exp \left(B^{\prime}|z|^{\sigma+\epsilon}\right)
$$

It follows that if f^{\prime} has order ρ, then f has order less than or equal to ρ.
2. Consider the entire function $1 / \Gamma(z)$.
(a) Show it does not satisfy

$$
\left|\frac{1}{\Gamma(z)}\right| \leq A \exp (B|z|)
$$

for any constants A, B. Hint: look at the points $-n-1 / 2$ where n is a positive integer.
Solution: We showed in class that

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)}
$$

Take $z=-n-1 / 2$. Then $\sin (\pi(-n-1 / 2))= \pm 1$. So

$$
\begin{aligned}
& \left.\left.\left|\frac{1}{\Gamma(-n-1 / 2)}\right|=\frac{1}{\pi}|\Gamma(1-(-n-1 / 2))|=\frac{1}{\pi} \right\rvert\, \Gamma(n+3 / 2)\right) \mid \\
& \left.\left.\left.=\frac{1}{\pi}(n+1 / 2)(n-1 / 2) \cdots 3 / 2 \right\rvert\, \Gamma(1 / 2)\right)\left|\geq \frac{n!}{\pi}\right| \Gamma(1 / 2)\right) \left\lvert\,=\frac{n!}{\sqrt{\pi}}\right.
\end{aligned}
$$

We have $|z|=n+1 / 2$, and for any constants A, B, n ! is eventually greater than $A \exp (B(n+1 / 2))$.
(b) Show there is no entire function satisfying a bound of the above form with simple zeros at $0,-1,-2,-3, \cdots$ and no other zeroes.

Solution: Let $f(z)$ be such a function. Then it has order less than or equal to 1 . By the Hadamard factorization theorem,

$$
f(z)=\exp (a z+b) \prod_{n=1}^{\infty} E_{1}(-z / n)
$$

Recall that $1 / \Gamma(z)$ is also of this form with $a=\gamma$ and $b=0$. So $1 / \Gamma(z)=$ $\exp (\gamma z-a z-b) f(z)$. This implies $1 / \Gamma(z)$ satisfies a bound of the form $A \exp (B|z|)$ and we know from part (a) that it does not.
3. Suppose there is an entire function $f(z)$ and a polynomial $p(z)$ such that $p(f(z))=e^{z}$ for all z. Prove that $p(z)$ can only have one root.
Solution: Since e^{z} is never zero, $f(z)$ cannot equal a root of $p(z)$. So $f(\mathbb{C})$ cannot contain any of the roots. By the little Picard theorem, $f(\mathbb{C})$ is either \mathbb{C} or \mathbb{C} minus a single point. So there can only be one root.
4. Prove that for all $z \in \mathbb{C}$

$$
\cos \left(\frac{\pi z}{2}\right)=\prod_{n=0}^{\infty}\left[1-\frac{z^{2}}{(2 n+1)^{2}}\right]
$$

Solution: $\cos \left(\frac{\pi z}{2}\right)$ is an entire function and since $\left|\cos \left(\frac{\pi z}{2}\right)\right| \leq \exp (\pi|z| / 2)$, it has finite order with order ≤ 1. It has zeroes at $2 n+1$ where n is an integer. We can also label the zeroes as $\pm(2 n+1)$ with $n=0,1,2, \cdots$. So the Hadamard factorization theorem says

$$
\cos \left(\frac{\pi z}{2}\right)=e^{a z+b} \prod_{n=0}^{\infty}\left[E_{1}\left(\frac{z}{(2 n+1)}\right) E_{1}\left(-\frac{z}{(2 n+1)}\right)\right]
$$

(The product converges absolutely, so we can order it any way we want.) Since

$$
\begin{aligned}
& {\left[E_{1}\left(\frac{z}{(2 n+1)}\right) E_{1}\left(-\frac{z}{(2 n+1)}\right)\right]} \\
& =\left(1-\frac{z}{2 n+1}\right) \exp \left(\frac{z}{2 n+1}\right)\left(1+\frac{z}{(2 n+1)}\right) \exp \left(-\frac{z}{2 n+1}\right)=\left(1-\frac{z^{2}}{(2 n+1)^{2}}\right)
\end{aligned}
$$

to finish the proof we need to show $a=0, b=0$. Evaluating at $z=0$ shows $e^{b}=1$. The evenness of \cos and of the infinite product shows $a=0$.
5. (a) Prove that for $R<1$ there is a constant $c(R)$ such for all complex a with $|a|<1-R$ and all f which are analytic on the unit disc \mathbb{D}, we have

$$
|f(a)| \leq c(R) \int_{0}^{2 \pi} \int_{0}^{R}\left|f\left(a+r e^{i \theta}\right)\right| r d r d \theta
$$

So
Solution: Since $|a|+R<1$, if $r \leq R$, then the circle of radius r centered at a is contained in \mathbb{D}. By Cauchy's integral formula

$$
\begin{aligned}
f(a) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z} d z \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta
\end{aligned}
$$

$$
|f(a)| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(a+r e^{i \theta}\right)\right| d \theta
$$

Multiply both sides by r and integrate from 0 to R.

$$
|f(a)| \int_{0}^{R} r d r \leq \frac{1}{2 \pi} \int_{0}^{R} \int_{0}^{2 \pi}\left|f\left(a+r e^{i \theta}\right)\right| r d \theta d r
$$

This proves (a) with $c(R)=\frac{2}{R^{2} \pi}$.
(b) Let f_{n} be analytic on \mathbb{D} and f continuous on \mathbb{D}. Suppose that f_{n} converges to f in $L^{1}(\mathbb{D})$ meaning that

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left|f_{n}\left(r e^{i \theta}\right)-f\left(r e^{i \theta}\right)\right|^{2} r d r d \theta \rightarrow 0
$$

Prove that f is analytic.
Solution: It suffice to show that f_{n} converges to f uniformly on the disc $|z|<1-\delta$ for all $\delta>0$. (Uniform limits of analytic functions are analytic.) Fix such an $\delta>0$. For any constant $c, f_{n}(z)-c$ is an analytic function of z and so part (a) implies that for any for $a \in D_{1-\delta}(0)$ and any r such that $r<\delta / 2$,

$$
\left|f_{n}(a)-c\right| \leq c(r) \int_{0}^{2 \pi} \int_{0}^{r}\left|f_{n}\left(a+r e^{i \theta}\right)-c\right| r d r d \theta
$$

Take $c=f(a)$ and we have

$$
\left|f_{n}(a)-f(a)\right| \leq c(r) \int_{0}^{2 \pi} \int_{0}^{r}\left|f_{n}\left(a+r e^{i \theta}\right)-f(a)\right| r d r d \theta
$$

By triangle inequality this is

$$
\begin{aligned}
& \leq c(r) \int_{0}^{2 \pi} \int_{0}^{r}\left|f_{n}\left(a+r e^{i \theta}\right)-f\left(a+r e^{i \theta}\right)\right| r d r d \theta \\
& +c(r) \int_{0}^{2 \pi} \int_{0}^{r}\left|f\left(a+r e^{i \theta}\right)-f(a)\right| r d r d \theta
\end{aligned}
$$

The first term may be bounded by $c(r)\left\|f_{n}-f\right\|_{1}$ since the region of integration is contained inside the unit disc. The second term may be bounded by

$$
\begin{equation*}
c(r) \pi r^{2} \sup _{z:|z-a| \leq r}|f(z)-f(a)| \tag{1}
\end{equation*}
$$

Note that $c(r) \pi r^{2}=2$. And the requirement that $r \leq \delta / 2$ means that z in the above sup lies in $D_{1-\delta / 2}(0)$. Since f is uniformly continuous on the compact set $\overline{D_{1-\delta / 2}(0)}$, the above sup goes to 0 as $r \rightarrow 0$. We have to be a bit careful with the order in which we choose things. Let $\epsilon>0$. Pick r so that (1) is $<\epsilon / 2$. Then pick N so that $c(r)\left\|f_{n}-f\right\|_{1}<\epsilon / 2$. Then putting this all together gives $\left|f_{n}(a)-f(a)\right|<\epsilon$ for $|z|<R$ and $n>N$. This shows f_{n} converges to f uniformly on $D_{r}(0)$.
6. Prove the following theorem. We have proved most of the various implications needed in class. For many implications you can just cite a theorem we have proved. For example, to prove (a) implies (e) you can just cite the Riemann mapping theorem. Hint: just what property of Ω did we need in the proof of the Riemann mapping theorem ?
Theorem: The following are equivalent for a connected open set $\Omega \subset \mathbb{C}$.
(a) Ω is simply connected, i.e., every closed curve is homotopic to a point.
(b) For every analytic function f on Ω and every closed contour γ in Ω, we have

$$
\int_{\gamma} f(z) d z=0
$$

(c) For every analytic function f on Ω there is an analytic function F on Ω such that $F^{\prime}=f$.
(d) For every analytic function f on Ω which does not vanish on Ω there is an analytic function g on Ω such that $e^{g}=f$.
(e) Either $\Omega=\mathbb{C}$ or there is a conformal map from Ω onto the unit disc.

Solution:

$(\mathrm{a}) \Rightarrow(\mathrm{b}):$ This is Cauchy's theorem.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: We proved this in class. The idea is that you fix a point z_{0} in Ω and define

$$
F(z)=\int_{\gamma} f(w) d w
$$

where γ is any contour from z_{0} to z. Property (b) implies that the integral does not depend on the choice of contour. It is then routine to show $F^{\prime}=f$. $(\mathrm{c}) \Rightarrow(\mathrm{d}):$ We proved this in class. Since f is never zero, f^{\prime} / f is analytic on Ω. So there is an F with $F^{\prime}=f^{\prime} / f$. The the derivative of $e^{-F} f$ is zero. So $e^{-F}=c$. Let $g(z)=F(z)+\ln (c)$.
$(\mathrm{d}) \Rightarrow(\mathrm{e}):$ Riemann's theorem says that $(\mathrm{a}) \Rightarrow(\mathrm{e})$. But if you look at the proof you see that the only property we needed for Ω was (d) and the existence of square roots of functions on Ω which never vanish which follows immediately from (d).
$(\mathrm{e}) \Rightarrow(\mathrm{a}):$ A conformal map is a homeomorphism. So Ω has whatever topological properties the unit disc does. In particular, Ω is simply connected.

We have proved $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e})$, which proves the five properties are equivalent.

