
Math 520a - Final take home exam - solutions

1. Let f(z) be entire. Prove that f has finite order if and only if f ′ has finite
order and that when they have finite order their orders are the same.

Solution: Suppose that f satisfies

|f(z)| ≤ A exp(B|z|σ)

By the Cauchy integral formula,

f ′(z) =
1

2πi

∫

γ

f(w)

w2
, dw

where we take γ to be a circle of radius 1 centered at z. On this contour,
|f(w)| ≤ A exp(B(|z| + 1)σ) and |w| ≥ |z| − 1. So

|f ′(z)| ≤ A
exp(B(|z| + 1)σ)

(|z| − 1)2
≤ A′ exp(B′|z|σ)

for some constants A′, B′, with the same σ as in the bound on f . It follows
that if f has order ρ, then f ′ has order less than or equal to ρ.

Now suppose f ′ satisfies

|f ′(z)| ≤ A exp(B|z|σ)

We have

f(z) = f(0) +

∫ z

0

f ′(w) dw

So

|f(z)| ≤ |f(0)| + |z|A exp(B|z|σ)

For any ǫ > 0 there are constants A′, B′ such that the above is

≤ A′ exp(B′|z|σ+ǫ)

It follows that if f ′ has order ρ, then f has order less than or equal to ρ.

2. Consider the entire function 1/Γ(z).
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(a) Show it does not satisfy

| 1

Γ(z)
| ≤ A exp(B|z|)

for any constants A, B. Hint: look at the points −n − 1/2 where n is a
positive integer.

Solution: We showed in class that

Γ(z)Γ(1 − z) =
π

sin(πz)

Take z = −n − 1/2. Then sin(π(−n − 1/2)) = ±1. So

∣

∣

∣

∣

1

Γ(−n − 1/2)

∣

∣

∣

∣

=
1

π
|Γ(1 − (−n − 1/2))| =

1

π
|Γ(n + 3/2))|

=
1

π
(n + 1/2)(n − 1/2) · · ·3/2|Γ(1/2))| ≥ n!

π
|Γ(1/2))| =

n!√
π

We have |z| = n + 1/2, and for any constants A, B, n! is eventually greater
than A exp(B(n + 1/2)).

(b) Show there is no entire function satisfying a bound of the above form
with simple zeros at 0,−1,−2,−3, · · · and no other zeroes.

Solution: Let f(z) be such a function. Then it has order less than or equal
to 1. By the Hadamard factorization theorem,

f(z) = exp(az + b)

∞
∏

n=1

E1(−z/n)

Recall that 1/Γ(z) is also of this form with a = γ and b = 0. So 1/Γ(z) =
exp(γz − az − b)f(z). This implies 1/Γ(z) satisfies a bound of the form
A exp(B|z|) and we know from part (a) that it does not.

3. Suppose there is an entire function f(z) and a polynomial p(z) such that
p(f(z)) = ez for all z. Prove that p(z) can only have one root.

Solution: Since ez is never zero, f(z) cannot equal a root of p(z). So f(C)
cannot contain any of the roots. By the little Picard theorem, f(C) is either
C or C minus a single point. So there can only be one root.
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4. Prove that for all z ∈ C

cos(
πz

2
) =

∞
∏

n=0

[

1 − z2

(2n + 1)2

]

Solution: cos(πz
2

) is an entire function and since | cos(πz
2

)| ≤ exp(π|z|/2),
it has finite order with order ≤ 1. It has zeroes at 2n + 1 where n is an
integer. We can also label the zeroes as ±(2n + 1) with n = 0, 1, 2, · · ·. So
the Hadamard factorization theorem says

cos(
πz

2
) = eaz+b

∞
∏

n=0

[E1(
z

(2n + 1)
)E1(−

z

(2n + 1)
)]

(The product converges absolutely, so we can order it any way we want.)
Since

[E1(
z

(2n + 1)
)E1(−

z

(2n + 1)
)]

= (1 − z

2n + 1
) exp(

z

2n + 1
)(1 +

z

(2n + 1)
) exp(− z

2n + 1
) = (1 − z2

(2n + 1)2
)

to finish the proof we need to show a = 0, b = 0. Evaluating at z = 0 shows
eb = 1. The evenness of cos and of the infinite product shows a = 0.

5. (a) Prove that for R < 1 there is a constant c(R) such for all complex a
with |a| < 1 − R and all f which are analytic on the unit disc D, we have

|f(a)| ≤ c(R)

∫

2π

0

∫ R

0

|f(a + reiθ)| rdrdθ

So
Solution: Since |a| + R < 1, if r ≤ R, then the circle of radius r centered
at a is contained in D. By Cauchy’s integral formula

f(a) =
1

2πi

∫

γ

f(z)

z
dz

=
1

2π

∫

2π

0

f(a + reiθ)dθ
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So

|f(a)| ≤ 1

2π

∫

2π

0

|f(a + reiθ)|dθ

Multiply both sides by r and integrate from 0 to R.

|f(a)|
∫ R

0

r dr ≤ 1

2π

∫ R

0

∫

2π

0

|f(a + reiθ)|r dθdr

This proves (a) with c(R) = 2

R2π
.

(b) Let fn be analytic on D and f continuous on D. Suppose that fn converges
to f in L1(D) meaning that

∫

2π

0

∫

1

0

|fn(reiθ) − f(reiθ)|2 rdrdθ → 0

Prove that f is analytic.
Solution: It suffice to show that fn converges to f uniformly on the disc
|z| < 1 − δ for all δ > 0. (Uniform limits of analytic functions are analytic.)
Fix such an δ > 0. For any constant c, fn(z) − c is an analytic function of
z and so part (a) implies that for any for a ∈ D1−δ(0) and any r such that
r < δ/2,

|fn(a) − c| ≤ c(r)

∫

2π

0

∫ r

0

|fn(a + reiθ) − c| rdrdθ

Take c = f(a) and we have

|fn(a) − f(a)| ≤ c(r)

∫

2π

0

∫ r

0

|fn(a + reiθ) − f(a)| rdrdθ

By triangle inequality this is

≤ c(r)

∫

2π

0

∫ r

0

|fn(a + reiθ) − f(a + reiθ)| rdrdθ

+ c(r)

∫

2π

0

∫ r

0

|f(a + reiθ) − f(a)| rdrdθ

The first term may be bounded by c(r)||fn−f ||1 since the region of integration
is contained inside the unit disc. The second term may be bounded by

c(r)πr2 sup
z:|z−a|≤r

|f(z) − f(a)| (1)
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Note that c(r)πr2 = 2. And the requirement that r ≤ δ/2 means that z
in the above sup lies in D1−δ/2(0). Since f is uniformly continuous on the

compact set D1−δ/2(0), the above sup goes to 0 as r → 0. We have to be a
bit careful with the order in which we choose things. Let ǫ > 0. Pick r so
that (1) is < ǫ/2. Then pick N so that c(r)||fn − f ||1 < ǫ/2. Then putting
this all together gives |fn(a) − f(a)| < ǫ for |z| < R and n > N . This shows
fn converges to f uniformly on Dr(0).

6. Prove the following theorem. We have proved most of the various impli-
cations needed in class. For many implications you can just cite a theorem
we have proved. For example, to prove (a) implies (e) you can just cite the
Riemann mapping theorem. Hint: just what property of Ω did we need in
the proof of the Riemann mapping theorem ?

Theorem: The following are equivalent for a connected open set Ω ⊂ C.
(a) Ω is simply connected, i.e., every closed curve is homotopic to a point.

(b) For every analytic function f on Ω and every closed contour γ in Ω, we
have

∫

γ

f(z) dz = 0

(c) For every analytic function f on Ω there is an analytic function F on Ω
such that F ′ = f .

(d) For every analytic function f on Ω which does not vanish on Ω there is
an analytic function g on Ω such that eg = f .

(e) Either Ω = C or there is a conformal map from Ω onto the unit disc.
Solution:

(a) ⇒ (b) : This is Cauchy’s theorem.

(b) ⇒ (c) : We proved this in class. The idea is that you fix a point z0 in Ω
and define

F (z) =

∫

γ

f(w) dw

where γ is any contour from z0 to z. Property (b) implies that the integral
does not depend on the choice of contour. It is then routine to show F ′ = f .

(c) ⇒ (d) : We proved this in class. Since f is never zero, f ′/f is analytic
on Ω. So there is an F with F ′ = f ′/f . The the derivative of e−F f is zero.
So e−F = c. Let g(z) = F (z) + ln(c).
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(d) ⇒ (e) : Riemann’s theorem says that (a) ⇒ (e). But if you look at
the proof you see that the only property we needed for Ω was (d) and the
existence of square roots of functions on Ω which never vanish which follows
immediately from (d).

(e) ⇒ (a) : A conformal map is a homeomorphism. So Ω has whatever
topological properties the unit disc does. In particular, Ω is simply connected.

We have proved (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e), which proves the five
properties are equivalent.
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