Math 520a - Homework 0

You do not have to turn in the first 6 problems.

For A ⊂ C, define int(A) = {z : ∃ε > 0 such that D_ε(z) ⊂ A}.
(a) Prove int(A) is open.
(b) Prove that if U is open and U ⊂ A, then U ⊂ int(A).
Define Ā = {z : ∃z_n ∈ A such that z_n → z}.
(a) Prove Ā is closed.
(b) Prove that if F is closed and A ⊂ F, then Ā ⊂ F.
(c) Prove Ā = (int(A^c))^c.
For A ⊂ C define ∂A = Ā \ int(A). Prove that
∂A = {z : ∃z_n ∈ A with z_n → z, and ∃w_n ∉ A with w_n → z}

4. The complex exponential: One way to define e^z for complex z is by its power series. Here is another. Letting z = x + iy, we should have

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}[\cos(y) + i\sin(y)]$$

So we can define e^{x+iy} to be the complex valued function whose real part is $u(x+iy) = e^x \cos(y)$ and whose imaginary part is $v(x+iy) = e^x \sin(y)$.

(a) Prove this is an entire function and it satisifes the differential equation $(e^z)' = e^z$.

(b) Let a be real and let C be the vertical line given by Re(z) = a. What is the image of C under the map e^z ?

5. Let Ω be the complex plane with the ray $(-\infty, 0]$ on the real axis removed:

$$\Omega = \mathbb{C} \setminus \{ z : Im(z) = 0, Re(z) \le 0 \}$$

Any $z \in \Omega$ can be written uniquely as $re^{i\theta}$ with $-\pi < \theta < \pi$, r > 0. Define $\ln(z)$ to be $\ln(r) + i\theta$. Prove that $\ln(z)$ is analytic on Ω and that $e^{\ln(z)} = z$.

6. Define Ω as in the previous problem. The square root can be defined by $\sqrt{z} = \exp(\ln(z)/2)$. Let \mathbb{H} be the upper half of the complex plane (not including the real axis).

(a) What is the image of Ω and of \mathbb{H} under the map \sqrt{z} ?

The following two problems should be turned in.

7. Let f(z) be defined on a neighborhood of z_0 . Suppose there is a complex number w such that for all angles θ ,

$$\lim_{r \to 0^+} \frac{f(z_0 + re^{i\theta}) - f(z_0)}{re^{i\theta}} = w$$

Does it follow that f is complex differentiable at z_0 ? Prove that it does or give a counterexample. In the above r goes to 0 only through positive real numbers.

8. Let $f(z) = \sqrt{1 - z^2}$ with $\sqrt{\cdots}$ defined as in previous problem. What is the image of the upper half plane \mathbb{H} under f?