Math 520a - Homework 0

You do not have to turn in the first 6 problems.

1. For $A \subset \mathbb{C}$, define $\operatorname{int}(A)=\left\{z: \exists \epsilon>0\right.$ such that $\left.D_{\epsilon}(z) \subset A\right\}$.
(a) Prove $\operatorname{int}(A)$ is open.
(b) Prove that if U is open and $U \subset A$, then $U \subset \operatorname{int}(A)$.
2. Define $\bar{A}=\left\{z: \exists z_{n} \in A\right.$ such that $\left.z_{n} \rightarrow z\right\}$.
(a) Prove \bar{A} is closed.
(b) Prove that if F is closed and $A \subset F$, then $\bar{A} \subset F$.
(c) Prove $\bar{A}=\left(\operatorname{int}\left(A^{c}\right)\right)^{c}$.
3. For $A \subset \mathbb{C}$ define $\partial A=\bar{A} \backslash \operatorname{int}(A)$. Prove that

$$
\partial A=\left\{z: \exists z_{n} \in A \text { with } z_{n} \rightarrow z, \text { and } \exists w_{n} \notin A \text { with } w_{n} \rightarrow z\right\}
$$

4. The complex exponential: One way to define e^{z} for complex z is by its power series. Here is another. Letting $z=x+i y$, we should have

$$
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}[\cos (y)+i \sin (y)]
$$

So we can define $e^{x+i y}$ to be the complex valued function whose real part is $u(x+i y)=e^{x} \cos (y)$ and whose imaginary part is $v(x+i y)=e^{x} \sin (y)$.
(a) Prove this is an entire function and it satisifes the differential equation $\left(e^{z}\right)^{\prime}=e^{z}$.
(b) Let a be real and let C be the vertical line given by $\operatorname{Re}(z)=a$. What is the image of C under the map e^{z} ?
5 . Let Ω be the complex plane with the ray $(-\infty, 0]$ on the real axis removed:

$$
\Omega=\mathbb{C} \backslash\{z: \operatorname{Im}(z)=0, \operatorname{Re}(z) \leq 0\}
$$

Any $z \in \Omega$ can be written uniquely as $r e^{i \theta}$ with $-\pi<\theta<\pi, r>0$. Define $\ln (z)$ to be $\ln (r)+i \theta$. Prove that $\ln (z)$ is analytic on Ω and that $e^{\ln (z)}=z$.
6. Define Ω as in the previous problem. The square root can be defined by $\sqrt{z}=\exp (\ln (z) / 2)$. Let \mathbb{H} be the upper half of the complex plane (not including the real axis).
(a) What is the image of Ω and of \mathbb{H} under the map \sqrt{z} ?

The following two problems should be turned in.

7. Let $f(z)$ be defined on a neighborhood of z_{0}. Suppose there is a complex number w such that for all angles θ,

$$
\lim _{r \rightarrow 0^{+}} \frac{f\left(z_{0}+r e^{i \theta}\right)-f\left(z_{0}\right)}{r e^{i \theta}}=w
$$

Does it follow that f is complex differentiable at z_{0} ? Prove that it does or give a counterexample. In the above r goes to 0 only through positive real numbers.
8. Let $f(z)=\sqrt{1-z^{2}}$ with $\sqrt{\cdots}$ defined as in previous problem. What is the image of the upper half plane \mathbb{H} under f ?

