Math 520a - Homework 2

1. Use Cauchy's integral formula (for an analytic function or its derivatives) to evaluate
(a) For the contour $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$, the integral

$$
\int_{\gamma} \frac{e^{i z}}{z^{2}} d z
$$

(b) For the contour $\gamma(t)=1+\frac{1}{2} e^{i t}, 0 \leq t \leq 2 \pi$, the integral

$$
\int_{\gamma} \frac{\ln (z)}{(z-1)^{n}} d z
$$

2. Let $f(z)$ be an entire function such that there are constants C, D with

$$
|f(z)| \leq C+D|z|^{n}, \quad \forall z
$$

Prove that f is a polynomial of degree at most n.
3. Let Ω be a region (connected open set). Suppose that f and g are analytic functions on Ω such that $f(z) g(z)=0$ for all $z \in \Omega$. Prove that at least one of f and g is identically zero on Ω.
4. Let f be entire and suppose that for every z_{0}, the power series expansion about z_{0}

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

has at least one coefficient a_{n} which is zero. (Note that the a_{n} depend on z_{0}.) Prove that f is a polynomial. This is problem 13 on p .67 in the book. You can find a hint there.
5. Let D be the open disc centered at the origin with radius 1 . Suppose that f is continuous on \bar{D}, analytic on D and that f never vanishes on \bar{D}. Suppose also that $|z|=1 \Rightarrow|f(z)|=1$. Prove that f is constant. This is problem 15 on p. 67 in the book. You can find a hint there.
6 . Let $g(t)$ be continuous on $[0, \infty)$ with $\int_{0}^{\infty}|g(t)| d t<\infty$. Define

$$
f(z)=\int_{0}^{\infty} \cos (z+t) g(t) d t
$$

Prove that $f(z)$ is entire. For complex $z, \cos (z)$ is defined to be $\left(e^{i z}+e^{-i z}\right) / 2$. (Caution: for complex z we do not have $|\cos (z)| \leq 1$.)
7. Let Ω be open. Let f_{n}, f be analytic on Ω and suppose that for all circles C such that the circle and its interior are in Ω, f_{n} converges uniformly to f on C. Prove that f_{n} converges uniformly to f on all compact subsets of Ω.

