## Math 520a - Homework 2

1. Use Cauchy's integral formula (for an analytic function or its derivatives) to evaluate
(a) For the contour $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$, the integral

$$
\int_{\gamma} \frac{e^{i z}}{z^{2}} d z
$$

(b) For the contour $\gamma(t)=1+\frac{1}{2} e^{i t}, 0 \leq t \leq 2 \pi$, the integral

$$
\int_{\gamma} \frac{\ln (z)}{(z-1)^{n}} d z
$$

Solution: I'll just give answers for this one.
(a) $-2 \pi$
(b) Integral is 0 for $n=1$. For $n>1$ it is $(-1)^{n} 2 \pi i /(n-1)$.
2. Let $f(z)$ be an entire function such that there are constants $C, D$ with

$$
|f(z)| \leq C+D|z|^{n}, \quad \forall z
$$

Prove that $f$ is a polynomial of degree at most $n$.
Solution: Since $f$ is entire it has a power series about the origin which converges for all $z$.

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

The coefficients are given by $a_{k}=f^{(k)}(0) / k$ !. We will show that $f^{(k)}(0)=0$ for $k>n$. This implies $a_{k}=0$ for $k>n$ and so the power series is just a polynomial.

By considering a circle of radius $R$, Cauchy's inequality says

$$
\left|f^{(k)}(0)\right| \leq \frac{k!M_{R}}{R^{k}}
$$

where $M_{R}$ is the sup of $|f(z)|$ over the circle of radius $R$. By the hypothesis, $M_{R} \leq C+D R^{n}$. For $k>n,\left(C+D R^{n}\right) / R^{k} \rightarrow 0$ as $R \rightarrow \infty$, and so $f^{(k)}(0)=0$
3. Let $\Omega$ be a region (connected open set). Suppose that $f$ and $g$ are analytic functions on $\Omega$ such that $f(z) g(z)=0$ for all $z \in \Omega$. Prove that at least one of $f$ and $g$ is identically zero on $\Omega$.
Solution: We can find a point $z_{0} \in \Omega$ and a sequence $z_{n} \in \Omega$ which converges to $z_{0}$ but never equals $z_{0}$. For every $n, f\left(z_{n}\right) g\left(z_{n}\right)=0$, and so either $f\left(z_{n}\right)=0$ or $g\left(z_{n}\right)=0$. So one of the sets $\left\{n: f\left(z_{n}\right)=0\right\}$ and $\left\{n: g\left(z_{n}\right)=0\right\}$ must be infinite. Assume the first one is infinite. Then there is a subsequence $z_{n_{k}}$ with $f\left(z_{n_{k}}\right)=0$. But this implies $f$ is identically 0 on $\Omega$.
4. Let $f$ be entire and suppose that for every $z_{0}$, the power series expansion about $z_{0}$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

has at least one coefficient $a_{n}$ which is zero. (Note that the $a_{n}$ depend on $z_{0}$. ) Prove that $f$ is a polynomial. This is problem 13 on p. 67 in the book. You can find a hint there.
Solution: Note that for the power series about $z_{0}, a_{n}=0$ is equivalent to $f^{(n)}\left(z_{0}\right)=0$. So the hypothesis says that for every $z_{0}$ there is an $n$ for which $f^{(n)}\left(z_{0}\right)=0$. Now let $A_{n}=\left\{z:|z| \leq 1, f^{(n)}\left(z_{0}\right)=0\right\}$. The union of the $A_{n}$ is the unit disc and so is uncountable. So at least one $A_{n}$ is uncountable (and hence infinite). Let $m$ be such that $A_{m}$ is infinite. Then there is a sequence $z_{l}$ of distinct elements in $A_{m}$. Since the closed unit disc is compact, it has a convergent subsequence. Since $f^{(m)}$ vanishes on this subsequence, $f^{(m)}$ is identically zero. So $f$ is a polynomial.
5. Let $D$ be an open disc. Suppose that $f$ is continuous on $\bar{D}$, analytic on $D$ and that $f$ never vanishes on $\bar{D}$. Suppose also that $|z|=1 \Rightarrow|f(z)|=1$. Prove that $f$ is constant. This is problem 15 on p. 67 in the book. You can find a hint there.
Solution: Discussed in class.
6. Let $g(t)$ be continuous on $[0, \infty)$ with $\int_{0}^{\infty}|g(t)| d t<\infty$. Define

$$
f(z)=\int_{0}^{\infty} \cos (z+t) g(t) d t
$$

Prove that $f(z)$ is entire. For complex $z, \cos (z)$ is defined to be $\left(e^{i z}+e^{-i z}\right) / 2$. (Caution: for complex $z$ we do not have $|\cos (z)| \leq 1$.)

Solution: Define

$$
f_{n}(z)=\int_{0}^{n} \cos (z+t) g(t) d t
$$

For a fixed $t, z \rightarrow \cos (z+t) g(t)$ is entire. Also, $\cos (z+t) g(t)$ is jointly continuous in $t$ and $z$. By the theorem proved in class, $f_{n}$ is entire. We will prove it converges uniformly on compact subsets of the plane to $f$. This will prove $f$ is analytic.

Every compact subset of the plane is contained in the strip $|\operatorname{Im}(z)| \leq M$ for some $M>0$. So it suffices to prove uniform convergence on such a strip.

$$
\left|f(z)-f_{n}(z)\right|=\left|\int_{n}^{\infty} \cos (z+t) g(t) d t\right|
$$

For $z=z+i y$, on the strip we have

$$
|\cos (z+t)|=\frac{1}{2}\left|e^{i z+i t}+e^{-i z-i t}\right| \leq \frac{1}{2}\left(\left|e^{i z}\right|+\left|e^{-i z}\right|\right)=\frac{1}{2}\left(\left|e^{-y}\right|+\left|e^{y}\right|\right) \leq e^{M}
$$

Hence

$$
\left|f(z)-f_{n}(z)\right| \leq e^{M} \int_{n}^{\infty}|g(t)| d t
$$

This bound holds for all $z$ in the strip and the right side is independent of $z$ and goes to 0 as $n \rightarrow \infty$ proving the needed uniform convergence.
7. Let $\Omega$ be open. Let $f_{n}, f$ be analytic on $\Omega$ and suppose that for all circles $C$ such that the circle and its interior are in $\Omega, f_{n}$ converges uniformly to $f$ on $C$. Prove that $f_{n}$ converges uniformly to $f$ on all compact subsets of $\Omega$.
Solution: Let $K$ be a compact subset of $\Omega$. For each $z \in K$ we can find $\epsilon_{z}>0$ such that $B_{3 \epsilon_{z}}(z) \subset \Omega$. (Note the factor of 3.) The discs $B_{\epsilon_{z}}(z)$ as $z$ ranges over $K$ are an open cover of $K$. (Note there is not a factor of 3 here.) So there is a finite subcover, i.e., there are $z_{1}, \cdots, z_{n} \in K$ such that

$$
K \subset \cup_{j=1}^{n} B_{\epsilon_{z_{j}}}\left(z_{j}\right)
$$

Since there are finite number of discs in the cover, it suffices to show the convergence is uniform on each disc. To simplify the notation, let $B_{\epsilon}(\zeta)$ be one of the discs.

We know $B_{3 \epsilon}(\zeta) \subset \Omega$. Let $C$ be the circle centered at $\zeta$ with radius $2 \epsilon$. Then for $z \in B_{2 \epsilon}(\zeta)$, we have

$$
f(z)-f_{n}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)-f_{n}(w)}{w-z} d w
$$

If $z \in B_{\epsilon}(\zeta)$, we have $|w-z| \geq \epsilon$ for $w \in C$ and so

$$
\left|f(z)-f_{n}(z)\right| \leq \frac{1}{2 \pi} \frac{1}{\epsilon}|C|\left\|f-f_{n}\right\|_{C}
$$

where $\left\|f-f_{n}\right\|_{C}$ is the sup of $\left|f(w)-f_{n}(w)\right|$ over $w \in C$ and $|C|$ is the length of $C$ which is just $4 \pi \epsilon$. So

$$
\left|f(z)-f_{n}(z)\right| \leq 2\left\|f-f_{n}\right\|_{C}
$$

Note that the right side is now independent of $z$ and goes to zero as $n \rightarrow \infty$ since $f_{n}$ converges uniformly to $f$ on $C$. This completes the proof.

