
Math 520a - Homework 2

1. Use Cauchy’s integral formula (for an analytic function or its derivatives)
to evaluate
(a) For the contour γ(t) = eit, 0 ≤ t ≤ 2π, the integral

∫
γ

eiz

z2
dz

(b) For the contour γ(t) = 1 + 1
2
eit, 0 ≤ t ≤ 2π, the integral

∫
γ

ln(z)

(z − 1)n
dz

Solution: I’ll just give answers for this one.
(a) −2π
(b) Integral is 0 for n = 1. For n > 1 it is (−1)n2πi/(n − 1).

2. Let f(z) be an entire function such that there are constants C, D with

|f(z)| ≤ C + D|z|n, ∀z

Prove that f is a polynomial of degree at most n.

Solution: Since f is entire it has a power series about the origin which
converges for all z.

f(z) =
∞∑

k=0

akz
k

The coefficients are given by ak = f (k)(0)/k!. We will show that f (k)(0) = 0
for k > n. This implies ak = 0 for k > n and so the power series is just a
polynomial.

By considering a circle of radius R, Cauchy’s inequality says

|f (k)(0)| ≤
k!MR

Rk

where MR is the sup of |f(z)| over the circle of radius R. By the hypothesis,
MR ≤ C + DRn. For k > n, (C + DRn)/Rk → 0 as R → ∞, and so
f (k)(0) = 0
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3. Let Ω be a region (connected open set). Suppose that f and g are analytic
functions on Ω such that f(z)g(z) = 0 for all z ∈ Ω. Prove that at least one
of f and g is identically zero on Ω.

Solution: We can find a point z0 ∈ Ω and a sequence zn ∈ Ω which converges
to z0 but never equals z0. For every n, f(zn)g(zn) = 0, and so either f(zn) = 0
or g(zn) = 0. So one of the sets {n : f(zn) = 0} and {n : g(zn) = 0} must
be infinite. Assume the first one is infinite. Then there is a subsequence znk

with f(znk
) = 0. But this implies f is identically 0 on Ω.

4. Let f be entire and suppose that for every z0, the power series expansion
about z0

f(z) =
∞∑

n=0

an (z − z0)
n

has at least one coefficient an which is zero. (Note that the an depend on z0.
) Prove that f is a polynomial. This is problem 13 on p. 67 in the book.
You can find a hint there.

Solution: Note that for the power series about z0, an = 0 is equivalent to
f (n)(z0) = 0. So the hypothesis says that for every z0 there is an n for which
f (n)(z0) = 0. Now let An = {z : |z| ≤ 1, f (n)(z0) = 0}. The union of the An

is the unit disc and so is uncountable. So at least one An is uncountable (and
hence infinite). Let m be such that Am is infinite. Then there is a sequence
zl of distinct elements in Am. Since the closed unit disc is compact, it has
a convergent subsequence. Since f (m) vanishes on this subsequence, f (m) is
identically zero. So f is a polynomial.

5. Let D be an open disc. Suppose that f is continuous on D, analytic on
D and that f never vanishes on D. Suppose also that |z| = 1 ⇒ |f(z)| = 1.
Prove that f is constant. This is problem 15 on p. 67 in the book. You can
find a hint there.

Solution: Discussed in class.

6. Let g(t) be continuous on [0,∞) with
∫
∞

0
|g(t)| dt < ∞. Define

f(z) =

∫
∞

0

cos(z + t) g(t) dt

Prove that f(z) is entire. For complex z, cos(z) is defined to be (eiz +e−iz)/2.
(Caution: for complex z we do not have | cos(z)| ≤ 1. )
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Solution: Define

fn(z) =

∫ n

0

cos(z + t) g(t) dt

For a fixed t, z → cos(z + t) g(t) is entire. Also, cos(z + t) g(t) is jointly
continuous in t and z. By the theorem proved in class, fn is entire. We will
prove it converges uniformly on compact subsets of the plane to f . This will
prove f is analytic.

Every compact subset of the plane is contained in the strip |Im(z)| ≤ M
for some M > 0. So it suffices to prove uniform convergence on such a strip.

|f(z) − fn(z)| = |

∫
∞

n

cos(z + t) g(t) dt|

For z = z + iy, on the strip we have

| cos(z + t)| =
1

2
|eiz+it + e−iz−it| ≤

1

2
(|eiz| + |e−iz|) =

1

2
(|e−y| + |ey|) ≤ eM

Hence

|f(z) − fn(z)| ≤ eM

∫
∞

n

|g(t)| dt

This bound holds for all z in the strip and the right side is independent of z
and goes to 0 as n → ∞ proving the needed uniform convergence.

7. Let Ω be open. Let fn, f be analytic on Ω and suppose that for all circles
C such that the circle and its interior are in Ω, fn converges uniformly to f
on C. Prove that fn converges uniformly to f on all compact subsets of Ω.

Solution: Let K be a compact subset of Ω. For each z ∈ K we can find
ǫz > 0 such that B3ǫz

(z) ⊂ Ω. (Note the factor of 3.) The discs Bǫz
(z) as z

ranges over K are an open cover of K. (Note there is not a factor of 3 here.)
So there is a finite subcover, i.e., there are z1, · · · , zn ∈ K such that

K ⊂ ∪n
j=1Bǫzj

(zj)

Since there are finite number of discs in the cover, it suffices to show the
convergence is uniform on each disc. To simplify the notation, let Bǫ(ζ) be
one of the discs.
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We know B3ǫ(ζ) ⊂ Ω. Let C be the circle centered at ζ with radius 2ǫ.
Then for z ∈ B2ǫ(ζ), we have

f(z) − fn(z) =
1

2πi

∫
C

f(w) − fn(w)

w − z
dw

If z ∈ Bǫ(ζ), we have |w − z| ≥ ǫ for w ∈ C and so

|f(z) − fn(z)| ≤
1

2π

1

ǫ
|C| ||f − fn||C

where ||f − fn||C is the sup of |f(w) − fn(w)| over w ∈ C and |C| is the
length of C which is just 4πǫ. So

|f(z) − fn(z)| ≤ 2||f − fn||C

Note that the right side is now independent of z and goes to zero as n → ∞
since fn converges uniformly to f on C. This completes the proof.

4


